scholarly journals Generalization of Amiet’s theory for small reduced-frequency and nearly-critical gusts

2022 ◽  
pp. 116742
Author(s):  
Andrea P.C. Bresciani ◽  
Sophie Le Bras ◽  
Leandro D. de Santana
Keyword(s):  
Author(s):  
Erin Stewart Mauldin

Emancipation proved to be a far-reaching ecological event. Whereas the ecological regime of slavery had reinforced extensive land-use practices, the end of slavery weakened them. Freedpeople dedicated less time to erosion control and ditching and used contract negotiations and sharecropping arrangements to avoid working in a centrally directed gang. Understandably, freedpeople preferred to direct their own labor on an individual plot of land. The eventual proliferation of share-based or tenant contracts encouraged the physical reorganization of plantations. The combination of these two progressive alterations to labor relations tragically undermined African Americans’ efforts to achieve economic independence by tightening natural limits on cotton production and reducing blacks’ access to the South’s internal provisioning economy. The cessation, or even reduced frequency, of land maintenance on farms exacerbated erosion, flooding, and crops’ susceptibility to drought.


1978 ◽  
Vol 100 (4) ◽  
pp. 664-675 ◽  
Author(s):  
S. Fleeter ◽  
R. L. Jay ◽  
W. A. Bennett

An experimental investigation was conducted to determine the fluctuating pressure distribution on a stationary vane row, with the primary source of excitation being the wakes from the upstream rotor blades. This was accomplished in a large scale, low speed, single stage research compressor. The forcing function, the velocity defect created by the rotor wakes, was measured with a crossed hot-wire probe. The aerodynamic response on the vanes was measured by means of flush mounted high response dynamic pressure transducers. The dynamic data were analyzed to determine the chordwise distribution of the dynamic pressure coefficient and aerodynamic phase lag as referenced to a transverse gust at the vane leading edge. Vane suction and pressure surface data as well as the pressure difference across the vane were obtained for reduced frequency values ranging from 3.65 to 16.80 and for an incidence angle range of 35.5 deg. The pressure difference data were correlated with a state-of-the-art aerodynamic cascade transverse gust analysis. The correlation was quite good for all reduced frequency values for small values of incidence. For the more negative incidence angle data points, it was shown that a convected wake phenomena not modeled in the analysis existed. Both the first and second harmonic unsteady pressure differential magnitude data decrease in the chordwise direction. The second harmonic magnitude data attains a value very nearly zero at the vane trailing edge transducer location, while the first harmonic data is still finite, albeit small, at this location. That the magnitude of the unsteady pressure differential data approaches zero near to the trailing edge, particularly the second harmonic data which has reduced frequency values to 16.8, is significant in that it reflects upon the validity of the Kutta condition for unsteady flows.


Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


2011 ◽  
Vol 689 ◽  
pp. 32-74 ◽  
Author(s):  
C.-K. Kang ◽  
H. Aono ◽  
C. E. S. Cesnik ◽  
W. Shyy

AbstractEffects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are identified based on a scaling argument. In particular, at the Reynolds number regime of $O(1{0}^{3} \ensuremath{-} 1{0}^{4} )$ and the reduced frequency of $O(1)$, the added mass force, related to the acceleration of the wing, is important. Based on the order of magnitude and energy balance arguments, a relationship between the propulsive force and the maximum relative wing-tip deformation parameter ($\gamma $) is established. The parameter depends on the density ratio, St, k, natural and flapping frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency can be deduced by the same scaling procedures. It seems that the maximum propulsive force is obtained when flapping near the resonance, whereas the optimal propulsive efficiency is reached when flapping at about half of the natural frequency; both are supported by the reported studies. The established scaling relationships can offer direct guidance for micro air vehicle design and performance analysis.


Author(s):  
Venkata Ravishankar Kasibhotla ◽  
Danesh Tafti

The paper is concerned with the prediction and analysis of dynamic stall of flow past a pitching NACA0012 airfoil at 1 million Reynolds number based on the chord length of the airfoil and at reduced frequency of 0.25 in a three dimensional flow field. The turbulence in the flow field is resolved using large eddy simulations with the dynamic Smagorinsky model at the sub grid scale. The development of dynamic stall vortex, shedding and reattachment as predicted by the present study are discussed in detail. This study has shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. The lift coefficient agrees well with the measurements during the upstroke. However, there are differences during the downstroke. The computed lift coefficient undergoes a sharp drop during the start of the downstroke as the convected leading edge vortex moves away from the airfoil surface. This is followed by a recovery of the lift coefficient with the formation of a secondary trailing edge vortex. While these dynamics are clearly reflected in the predicted lift coefficient, the experimental evolution of lift during the downstroke maintains a fairly smooth and monotonic decrease in the lift coefficient with no lift recovery. The simulations also show that the reattachment process of the stalled airfoil is completed before the start of the upstroke in the subsequent cycle due to the high reduced frequency of the pitching cycle.


1952 ◽  
Vol 25 (4) ◽  
pp. 720-729 ◽  
Author(s):  
John D. Ferry ◽  
Edwin R. Fitzgerald ◽  
Lester D. Grandine ◽  
Malcolm L. Williams

Abstract By the use of reduced variables, the temperature dependence and frequency dependence of dynamic mechanical properties of rubberlike materials can be interrelated without any arbitrary assumptions about the functional form of either The definitions of the reduced variables are based on some simple assumptions regarding the nature of relaxation processes. The real part of the reduced dynamic rigidity, plotted against the reduced frequency, gives a single composite curve for data over wide ranges of frequency and temperature; this is true also for the imaginary part of the rigidity or the dynamic viscosity. The real and imaginary parts of the rigidity, although independent measurements, are interrelated through the distribution function of relaxation times, and this relation provides a check on experimental results. First and second approximation methods of calculating the distribution function from dynamic data are given. The use of the distribution function to predict various types of time-dependent mechanical behavior is illustrated.


Cephalalgia ◽  
2011 ◽  
Vol 31 (13) ◽  
pp. 1336-1342 ◽  
Author(s):  
V Novack ◽  
L Fuchs ◽  
L Lantsberg ◽  
S Kama ◽  
U Lahoud ◽  
...  

Background: The association between migraine and obesity gives the clinician with an exciting possibility to alleviate migraine suffering through weight-reduction gastric-restrictive operations. We hypothesized that bariatric weight-reduction intervention (gastric banding) will be associated with reduction of migraine burden in this population. Methods: A total of 105 women between 18 and 50 years of age, admitted for bariatric surgery between April 2006 and February 2007, were screened for migraine. Twenty-nine with diagnosis of migraine were enrolled into the prospective phase. We followed the migraine pattern of these patients for 6 months post bariatric surgery. Results: Baseline median migraine frequency was six headache days a month. Post bariatric surgery, the migraine-suffering women reported of a lower frequency of migraine attacks ( p < 0.001), shorter duration of the attacks ( p = 0.02), lower medication use during the attack ( p = 0.005), less non-migraine pain (44.8 vs. 33%, p = 0.05), and post-bariatric surgery reduction in headache-related disability assessed by the MIDAS and HIT-6 scores. There was a reduction in migraine frequency among both episodic (from four to one episodes a month) and chronic (from 16.8 to 8.5 episodes per month) migraine patient cohorts separately and combined. Conclusions: Among migraine-suffering premenopausal obese women, we found a reduced frequency of migraine attacks and improvement of headache-related disability post bariatric surgery. Our findings should be interpreted cautiously. The absence of a control group and the non-blinded nature of our small study make it difficult to draw firm conclusions about the causal nature of the headache changes observed in this population. Further study is needed to evaluate the possible specific effects of surgical weight loss on migraine in obese women.


Author(s):  
Thomas Kinsey ◽  
Guy Dumas

A new concept of hydrokinetic turbine using oscillating hydrofoils to extract energy from water currents (tidal or gravitational) is presented, tested and analyzed in the present investigation. Due to its rectangular extraction plane, this technology is particularly well suited for river beds and shallow waters near the coasts. The present turbine is a 2 kW prototype, composed of two rectangular oscillating hydrofoils of aspect ratio 7 in a tandem spatial configuration. The pitching motion of each hydrofoil is coupled to their cyclic heaving motion through four-link mechanisms which effectively yield a one-degree-of-freedom system driving a speed-controlled electric generator. The turbine has been mounted on a custom-made pontoon boat and dragged on a lake at different velocities. Instantaneous extracted power has been measured and cycle-averaged for several water flow velocities and hydrofoil oscillation frequencies. Results are demonstrated to be self-consistent and validate our extensive 2D flow simulation database. The present data show optimal performances of the oscillating hydrofoils concept at a reduced frequency of about 0.12, at which condition the measured power extraction efficiency reaches 40% once the overall losses in the mechanical system are taken into account. Further measurements of power extraction with a single oscillating hydrofoil have also been performed by taking out the downstream hydrofoil of the tandem pair. Those measurements favorably compare, quantitatively, with available 3D CFD predictions. The 40% hydrodynamic efficiency of this first prototype exceeds expectation and reaches levels comparable to the best performances achievable with modern rotor-blades turbines. It thus demonstrates the promising potential of the oscillating hydrofoils technology to efficiently extract power from an incoming water flow.


Sign in / Sign up

Export Citation Format

Share Document