Horizontal flow reactor optimization for biogas recovery during high solid organics fermentation: Rheological characteristic analyses

Author(s):  
Liangliang Wei ◽  
Yimin Ren ◽  
Fengyi Zhu ◽  
Xinhui Xia ◽  
Chonghua Xue ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


2014 ◽  
Vol 22 (8) ◽  
pp. 5831-5841 ◽  
Author(s):  
Jefferson E. Silveira ◽  
Juan A. Zazo ◽  
Gema Pliego ◽  
Edério D. Bidóia ◽  
Peterson B. Moraes

1990 ◽  
Vol 45 (8) ◽  
pp. 2169-2176 ◽  
Author(s):  
D. Suter ◽  
A. Bartroli ◽  
F. Schneider ◽  
D.W.T. Rippin ◽  
E.J. Newson

2020 ◽  
Vol 33 (4) ◽  
pp. 459-470 ◽  
Author(s):  
J. Buchmaier ◽  
Christoph Brunner ◽  
Bettina Muster ◽  
Bernd Nidetzky ◽  
Rama Krishna Gudiminchi ◽  
...  

Within this study, an enzymatic hydrolysis process using α-cellulosic feedstock was<br /> performed in a specially designed plug-flow reactor, referred to as an Oscillatory Flow<br /> Bioreactor (OFB). The aims of this approach were to achieve intensification in terms of<br /> realising a more energy- and resource-efficient enzymatic hydrolysis, as well as to set the<br /> basis for continuous processes in such a reactor. The OFB performance was evaluated for<br /> high solid loadings of up to 15 %, and compared to the performance of a Stirred Tank Reactor (STR). Experimental results of the OFB operating at an oscillation frequency of<br /> 2 Hz and an oscillation amplitude of 10 mm exhibit better conversion efficiencies (+ 6.7 %)<br /> than the STR after 24 h, while requiring only 7 % of the STR power density (W m–3). Therefore, the OFB enables efficient, uniform mixing at lower power densities than STRs for applications with high solid loadings.


Inge CUC ◽  
2021 ◽  
Vol 17 (2) ◽  
Author(s):  
Tatiana Rodriguez ◽  
Juan Gabriel Rueda-Bayona

Introduction: In recent years, the "emerging pollutants" in urban, industrial, and surface water bodies have called the attention worldwide.  In many cases, these substances correspond to pollutants that have not been yet regulated by the environmental authorities. Hospitals are considered the main source of these contaminants as a result of different activities.  However, there is no consensus about the appropriate treatments for removing this kind of pollutants in the wastewaters; independent conventional biological processes do not reach the desirable values of discharge limits. Advanced oxidation processes (AOP) are known as an appropriate technology, not only to improve the biodegradability of recalcitrant compounds, but also to contribute to the removal of certain substances that are difficult to treat during the biological process.   Objective: Thus, this study evaluated the application of O3z and O3 /H2O2 to the effluent of an anaerobic horizontal flow reactor and immobilized biomass (HAIB). Methodology: The oxidizers were applied in a lab-scale batch borosilicate glass reactor. The reaction time was 60 min and samples were taken at intervals of 15 min. Parameters such as absorbance at UV254, biodegradability ratio expressed as COD/BOD5, and color as VIS436 were measured. All samples were analyzed in duplicate. Results. The results showed that the application of Ozone and O3/H2O2 results in an increase in the biodegradability of 25% and 67% respectively. Concerning color, an efficiency of 85 % for Ozone and 100 % for O3 /H2O2 was observed. Besides, the AOPs applied also showed their effectiveness in removing aromatic organics, removing 40 to 50% of UV254. Conclusions: Finally, it is important to mention that the application of advanced oxidation processes as a post-treatment of anaerobic effluents increases biodegradability mainly due to the transformation suffered by recalcitrant compounds.


Waterlines ◽  
1987 ◽  
Vol 5 (4) ◽  
pp. 24-28 ◽  
Author(s):  
Martin Wegelin ◽  
Roland Schertenleib
Keyword(s):  

2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document