MiR-197-3p reduces bortezomib resistance in multiple myeloma by inhibiting IL-6 expression in a MEAF6-dependent manner

2022 ◽  
pp. 106785
Author(s):  
Ying Liu ◽  
Peng Cheng ◽  
Weihua Zhao ◽  
Lihua Zhu ◽  
Jingzhe Sui ◽  
...  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1925 ◽  
Author(s):  
Jing Shao ◽  
Hongxiang Wang ◽  
Guolin Yuan ◽  
Zhichao Chen ◽  
Qiubai Li

Cytochrome P450 (CYP) epoxygenases and the metabolites epoxyeicosatrienoic acids (EETs) exert multiple biological effects in various malignancies. We have previously found EETs to be secreted by multiple myeloma (MM) cells and to be involved in MM angiogenesis, but the role of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and mobility of MM cells remains unknown. In the present study, we found that MM cell lines generated detectable levels of 11,12-EET/14,15-EET and that increased levels of EETs were found in the serum of MM patients compared to healthy donors. The addition of exogenous EETs induced significantly enhanced proliferation of MM cells, whereas 17-octadecynoic acid (17-ODYA), an inhibitor of the CYP epoxygenase pathway, inhibited the viability and proliferation of MM cells. Moreover, this inhibitory effect could be successfully reversed by exogenous EETs. 17-ODYA also inhibited the motility of MM cells in a time-dependent manner, with a reduction of the gelatinolytic activity and protein expression of the matrix metalloproteinases (MMP)-2 and MMP-9. These results suggest the CYP epoxygenase pathway to be involved in the proliferation and invasion of MM cells, for which 17-ODYA could be a promising therapeutic drug.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2914-2923 ◽  
Author(s):  
Helena Spets ◽  
Patrik Georgii-Hemming ◽  
Jan Siljason ◽  
Kenneth Nilsson ◽  
Helena Jernberg-Wiklund

Abstract A poor response to Fas-induced apoptosis is evident in some multiple myeloma (MM) cell lines and primary cells. In this study, we have examined the possibility to increase the sensitivity to Fas-induced apoptosis by pretreatment of MM cells with interferon-γ (IFN-γ) or interferon- (IFN-). Both IFN-γ and IFN- markedly increased the Fas-induced apoptosis in all cell lines tested (U-266-1970, U-266-1984, and U-1958). In the U-266-1970 and U-1958 cell lines, pretreatment with either IFN-γ or IFN- also inhibited proliferation in a dose-dependent manner. In contrast, IFN-γ activation of the Fas death pathway in the U-266-1984 cells was not accompanied by growth inhibition. Incubation with the IFNs increased the Fas antigen expression in one of three cell lines but did not alter the expression of Bcl-2 or Bax. The IFNs are important regulators of growth and survival in MM cells. Our results suggest that activation of Fas-mediated apoptosis is a novel mechanism by which the IFNs exert inhibitory effects on MM cells. © 1998 by The American Society of Hematology.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3179-3186 ◽  
Author(s):  
Shuji Ozaki ◽  
Masaaki Kosaka ◽  
Shingo Wakatsuki ◽  
Masahiro Abe ◽  
Yasuo Koishihara ◽  
...  

Abstract Multiple myeloma remains an incurable malignancy because of marked resistance of tumor cells to conventional chemotherapeutic agents. Alternative strategies are needed to solve these problems. To develop a new strategy, we have generated a monoclonal antibody (MoAb), which detects a human plasma cell-specific antigen, HM1.24. In this report, we evaluated the in vivo antitumor effect of unconjugated anti-HM1.24 MoAb on human myeloma xenografts implanted into severe combined immunodeficiency (SCID) mice. Two models of disseminated or localized tumors were established in SCID mice by either intravenous or subcutaneous injection of human myeloma cell lines, ARH-77 and RPMI 8226. When mice were treated with a single intraperitoneal injection of anti-HM1.24 MoAb 1 day after tumor inoculation, the development of disseminated myeloma was completely inhibited. In mice bearing advanced tumors, multiple injections of anti-HM1.24 MoAb reduced the tumor size and significantly prolonged survival, including tumor cure, in a dose-dependent manner. The proliferation of cultured human myeloma cells was inhibited in vitro by anti-HM1.24 IgG-mediated complement-dependent cytotoxicity, but not by the antibody alone. Moreover, spleen cells from SCID mice mediated antibody-dependent cell cytotoxicity against RPMI 8226 cells. These results indicate that anti-HM1.24 MoAb can be used for immunotherapy of multiple myeloma and related plasma cell dyscrasias.


2018 ◽  
Vol 48 (2) ◽  
pp. 785-800 ◽  
Author(s):  
Yi Zhao ◽  
Enfan Zhang ◽  
Ning Lv ◽  
Liang Ma ◽  
Shunnan Yao ◽  
...  

Background/Aims: Patients with multiple myeloma (MM) invariably relapse with chemotherapy-resistant disease, underscoring the need for new therapeutic options that bypass these resistance mechanisms. Metformin is a widely prescribed antidiabetic drug with direct antitumor activity against various tumor cell lines. FTY720, also known as fingolimod, is an immune-modulating agent approved by the FDA as oral medication to treat the relapsing form of multiple sclerosis (MS). In recent years, FTY720 has attracted attention due to its anti-tumor activity. To explore an optimized combinational therapy, interactions between metformin and FTY720 were examined in MM cells. Methods: MTT assays were employed to assess the viability of MM cells. An apoptotic nucleosome assay was employed to measure apoptosis. Loss of mitochondrial membrane potential (MMP, ΔΨm) and cellular levels of ROS were measured by flow cytometry. qRT-PCR was used to analyze the expression of mRNAs. Western blotting assays were applied to measure the levels of proteins involved in different signaling pathways. Results: Coadministration of metformin and FTY720 synergistically inhibited the proliferation of MM cells. Increased levels of apoptosis, activation of caspase-3 and cleavage of PARP were detected after cotreatment with metformin and FTY720. These events were associated with modulation of Bcl-2 proteins, loss of MMP, ER stress induction, and inhibition of the PI3K/AKT/mTOR signaling pathway. The metformin/FTY720 regimen markedly induced ROS generation; moreover, apoptosis, ER stress and inhibition of PI3K/AKT/ mTOR were attenuated by the ROS scavenger NAC. Conclusions: Exposure to metformin in combination with FTY720 potently induces apoptosis in MM cells in a ROS-dependent manner, suggesting that a strategy combining these agents warrants further investigation in MM.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2414-2414
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Xia Tong2 ◽  
Laurence Catley ◽  
Daniel Santos ◽  
...  

Abstract We previously demonstrated that CHIR-12.12, a fully human anti-CD40 mAb (IgG1) generated in XenoMouseÒ mice (Abgenix, Inc), blocks CD40/CD40 ligand (CD40L) interactions and has more potent anti-lymphoma activity than Rituximab both in vivo and in vitro (abstract #2386, ASH, San Diego, Dec. 2003). In this study, we assess the efficacy of CHIR-12.12 against human multiple myeloma (MM) using CD40-expressing MM cell lines and purified CD138+ patient cells. CHIR-12.12 binds to purified CD138+ MM cells in >80% (10/12) of patient samples, as measured by flow cytometry: the mean fluorescence intensity (MFI) range was 1 to 20 for CHIR-12.12 vs 0.2–0.9 for control human IgG1. We next examined the antagonist activity of CHIR-12.12 in MM cells. CHIR-12.12 blocked CD40L-mediated proliferation of CD40-expressing MM lines and purified CD138+ patient cells from 2 MM patients in a dose-response manner. In contrast, CHIR-12.12 alone did not alter constitutive MM cell proliferation. Immunoblotting analysis demonstrated that PI3-K/AKT, NF-kB, and ERK activation induced by hCD40L in the 12BM MM cell line was significantly inhibited by CHIR-12.12 (5 μg/ml). Adhesion of MM cells to bone marrow stromal cells (BMSCs) confers growth and survival benefit for tumor cells. Since CD40 activation, either by stimulatory mouse anti-CD40 mAb G28.5 or formaldehyde-fixed CHO cells expressing hCD40L, induces MM cell adhesion to fibronectin (FN) or BMSCs, we next asked whether antagonist CHI12.12 abrogates this process. CHIR-12.12 inhibited CD40L-induced adhesion of MM cell lines to FN in a dose dependent manner (0.001-10 μg/ml), whereas control human IgG did not. Moreover, CHIR-12.12 (1 μg/ml) blocked hCD40L-induced adhesion of freshly isolated patient MM cells to BMSCs. Adhesion of MM cells to BMSCs induces IL-6 secretion, an important growth and survival cytokine for MM cells, and treatment of MM cells with hCD40L further augmented adhesion-induced IL-6 secretion. Conversely, pretreatment of CD40-expressing MM cell lines with CHIR-12.12 significantly decreased IL-6 secretion triggered by coculture of MM cells with BMSCs. We next examined whether CHIR-12.12 stimulates antibody-dependent cellular cytotoxicity (ADCC) against CD40-expressing MM cells. Human peripheral blood mononuclear cells and purified NK cells (CD56+CD3−) were used as effector cells. CHIR-12.12 triggered MM cell lysis in a dose dependent manner, as measured in CD40-expressing MM cell lines. The maximum specific lysis of 20–70 % was achieved at 10 μg/ml concentration of CHIR-12.12. CHIR-12.12 mediated lysis was specific to CD40-expressing MM cells, as CHIR-12.12 did not induce ADCC against CD40-negative MM cells. Importantly, CHIR-12.12 induced ADCC against CD138+ cells isolated from 2 MM patients. These results provide preclinical rationale for clinical evaluation of CHIR-12.12 with the goal of improving patient outcome in MM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3460-3460 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Iris Breitkreutz ◽  
Weihua Song ◽  
Peter Burger ◽  
...  

Abstract Activation of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) signaling pathway mediates tumor cell growth in many cancers, including human multiple myeloma (MM). Specifically, this pathway mediates MM cell growth and survival induced by cytokines/growth factors (i.e. IL-6, IGF-1, CD40, BAFF) and adhesion to bone marrow stromal cells (BMSCs), thereby conferring resistance to apoptosis in the bone marrow (BM) milieu. In this study, we therefore examined the effect of the MEK1/2 inhibitor AZD6244 (ARRY-142886), on human MM cell lines, freshly isolated patient MM cells and MM cells adhered to BMSCs. AZD6244, inhibits constitutive and cytokine (IL-6, IGF-1, CD40)-stimulated ERK1/2, but not AKT phosphorylation. Importantly, AZD6244 inhibits the proliferation and survival of human MM cell lines, regardless of sensitivity to conventional chemotherapy, as well as freshly isolated patient MM cells. AZD6244 induces apoptosis in patient MM cells even in the presence of BMSCs, as evidenced by caspase 3 activity and PARP cleavage at concentrations as low as 20 nM. AZD6244 overcomes resistance to apoptosis in MM cells conferred by IL-6 and BMSCs, and inhibits IL-6 secretion induced by MM adhesion to BMSCs. AZD6244 suppresses MM cell survival/growth signaling pathways (i.e., STAT3, Bcl-2, cyclin E1, CDK1, CDK3, CDK7, p21/Cdc42/Rac1-activated kinase 1, casein kinase 1e, IRS1, c-maf) and up-regulates proapoptotic cascades (i.e., BAX, BINP3, BIM, BAG1, caspase 3, 8, 6). AZD6244 also upregulates proteins triggering cell cycle arrest (i.e. p16INK4A, p18INK4C, p21/WAF1 [Cdkn1a], p27 [kip1], p57). In addition, AZD6244 inhibits adhesion molecule expression in MM cells (i.e. integrin a4 [VLA-4], integrin b7, ICAM-1, ICAM-2, ICAM-3, catenin a1, c-maf) associated with decreased MM adhesion to BMSCs. These pleiotropic proapoptotic, anti-survival, anti-adhesion and -cytokine secretion effects of AZD6244 abrogate BMSC-derived protection of MM cells, thereby sensitizing them to both conventional (dexamethasone) and novel (perifosine, lenalidomide, and bortezomib) therapies. In contrast, AZD6244 has minimal cytotoxicity in BMSCs and does not inhibit DNA synthesis in CD40 ligand-stimulated CD19 expressing B-cells derived from normal donors at concentrations toxic to MM cells (between 0.02–2 mM). Furthermore, AZD6244 inhibits the expression/secretion of osteoclast (OC)-activating factors (i.e., macrophage inflammatory protein (MIP)-1a, MIP-1b, IL-1b, VEGF) from MM cells. It also downregulates MM growth and survival factors (IL-6, BAFF, APRIL) in OC cultures derived from MM patient peripheral blood mononuclear cells (PBMCs). Significantly, AZD6244 inhibits OC differentiation from MM PBMCs (n=10) in a dose-dependent manner. Together these results provide the preclinical basis for clinical trials with AZD6244 (ARRY-142886) in MM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3457-3457 ◽  
Author(s):  
Eric D. Hsi ◽  
Roxanne Steinle ◽  
Balaji Balasa ◽  
Aparna Draksharapu ◽  
Benny Shum ◽  
...  

Abstract Background: To identify genes upregulated in human memory B and plasma cells, naïve B cell cDNA was subtracted from plasma cell and memory B cell cDNA. One gene that was highly expressed in plasma cells encodes CS1 (CD2 subset 1, CRACC, SLAMF7), a cell surface glycoprotein of the CD2 family. CS1 was originally identified as a natural killer (NK) cell marker. Monoclonal antibodies (mAbs) specific for CS1 were used to validate CS1 as a potential target for the treatment of multiple myeloma (MM). Methods: Anti-CS1 mAbs were generated by immunizing mice with a protein comprising of the extracellular domain of CS1. Two clones, MuLuc63 and MuLuc90, were selected to characterize CS1 protein expression in normal and diseased tissues and blood. Fresh frozen tissue analysis was performed by immunohistochemistry (IHC). Blood and bone marrow analysis was performed using flow cytometry with directly conjugated antibodies. HuLuc63, a novel humanized anti-CS1 mAb (derived from MuLuc63) was used for functional characterization in non-isotopic LDH-based antibody-dependent cellular cytotoxicity (ADCC) assays. Results: IHC analysis showed that anti-CS1 staining occurred only on mononuclear cells within tissues. The majority of the mononuclear cells were identified as tissue plasma cells by co-staining with anti-CD138 antibodies. No anti-CS1 staining was detected on the epithelia, smooth muscle cells or vessels of any normal tissues tested. Strong anti-CS1 staining was also observed on myeloma cells in 9 of 9 plasmacytomas tested. Flow cytometry analysis of whole blood from both normal healthy donors and MM patients showed specific anti-CS1 staining in a subset of leukocytes, consisting primarily of CD3−CD(16+56)+ NK cells, CD3+CD(16+56)+ NKT cells, and CD3+CD8+ T cells. Flow cytometry of MM bone marrow showed a similar leukocyte subset staining pattern, except that strong staining was also observed on the majority of CD138+CD45−/dim to + myeloma cells. No anti-CS1 binding was detected to hematopoietic CD34+CD45+ stem cells. To test if antibodies towards CS1 may have anti-tumor cell activity in vitro, ADCC studies using effector cells (peripheral blood mononuclear cells) from 23 MM patients and L363 MM target cells were performed. The results showed that HuLuc63, a humanized form of MuLuc63, induced significant ADCC in a dose dependent manner. Conclusions: Our study identifies CS1 as an antigen that is uniformly expressed on normal and neoplastic plasma cells at high levels. The novel humanized anti-CS1 mAb, HuLuc63, exhibits significant ADCC using MM patient effector cells. These results demonstrate that HuLuc63 could be a potential new treatment for multiple myeloma. HuLuc63 will be entering a phase I clinical study for multiple myeloma.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 110-110 ◽  
Author(s):  
Keita Kirito ◽  
Hu Yongzhen ◽  
Kozue Yoshida ◽  
Toru Mitsumori ◽  
Kei Nakajima ◽  
...  

Abstract In spite of the recent development of therapeutic strategies, multiple myeloma (MM) still remains incurable. Several cytokines and chemokines contribute to progression of the disease and acquisition of resistance to chemotherapy. These humoral factors support the growth and survival of myeloma cells through the regulation of transcription factors including NF-κB, Stat3 and FOXO3a. Hypoxia inducible factor-1 (HIF-1) is an important transcription factor that is activated under low oxygen tension and controls dozens of genes involved in angiogenesis, energy production and resistance to apoptosis. Interestingly, HIF-1 is frequently activated in cancer cells even under normoxic condition and it is well established that HIF-1 expression and activation correlates with tumor progression and resistance to cancer treatments. In this study, we investigated whether HIF-1 is involved in the biology of multiple myeloma. To this end, we used three MM cell lines U266, RPMI8226 and KMM-1. After informed consent, we also prepared primary MM cells from bone marrow samples of patients (n=5) using anti-CD138 magnetic beads. Initially, we treated MM cells with insulin-like growth factor-1 (IGF-1) and IL-6, both of which are major growth and survival factors for myeloma cells. Treatment with IGF-1 and, to be a lesser degree, IL-6 clearly enhanced expression of HIF-1α, a subunit of HIF-1, in all three cell lines. Similar results were obtained from isolated primary MM cells. Based on several lines of evidence that survivin, a member of inhibitor of apoptosis (IAP) family protein, is transcriptionally regulated by HIF-1 in breast cancer cells, and that this anti-apoptotic factor is important for growth of MM cells, we examined whether HIF-1 supports the survival of MM cells through the induction of survivin. Quantitative RT-PCR assay revealed that IGF-1 increased survivin mRNA both in MM cell lines and in primary MM cells. In addition, IGF-1 activated survivin gene promoter containing a HIF-1-binding site. To confirm that IGF-1-induced activation of survivin gene is mediated by HIF-1, we treated MM cell lines with echinomycin, an inhibitor of DNA-binding activity of HIF-1. As expected, echinomycin inhibited IGF-1-induced survivin gene expression in a dose-dependent manner. The inhibitor also induced apoptosis of MM cells, and IGF-1 could not rescue the MM cells from echinomycin-induced apoptosis. Furthermore, echinomycin enhanced melphalan-induced apoptosis of MM cells. To further examine the involvement of HIF-1 in IGF-1-induced survivin gene expression, we generated three independent HIF-1α knockdown KMM-1 clones using siRNA system. Survivin mRNA was not detected in the HIF-1α knockdown cells, and these clones easily underwent apoptosis even in the presence of IGF-1, compared to the parental cells. Taken together, HIF-1 plays a pivotal role in survival of MM cells through the induction of survivin gene. In conclusion, HIF-1 might be an attractive therapeutic target for MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5175-5175
Author(s):  
Juliana Pereira ◽  
Debora Levy ◽  
Jorge Luis Maria Ruiz ◽  
Felipe Vieira Rodrigues Maciel ◽  
Dalton de Alencar Fisher Chamone ◽  
...  

Abstract JBD57 is a nucleoside/nucleotide analogue that in human cells causes depletion of mitochondrial DNA by disrupting oxidative phosphorylation pathways leading to toxic accumulation of nonesterified fatty acids, dicarboxylic acids and free radicals. Human 26S proteasome is also a target for JBD57. Here we evaluated JBD57 citotoxicity in several human tumor cell lines in vitro. Human MM cell line RPMI 8226/S (CCL-155), human T-cell lymphoblastic-like (Jurkat) and human T-cell leukemia (1301) were grown in RPMI 1640 medium; uterine sarcoma (MES-S (CRL-1976) cells were grown in McCoy medium; HUV-EC-C (CRL-1730) cells were grown in 199/EBSS medium. Media were supplemented with 10 % FBS. Cells were incubated at 37°C in a water-jacketed incubator with 5 % CO2. To evaluate JBD57 citotoxicity in RPMI 8226/S, MES-S, Jurkat, 1301 and HUV-EC-C cells, 104cells/well were grown in flat-bottomed 96-well tissue culture plates for 24, 48 and 72 hr; JBD57 was added to the media in several concentrations (0μM, 32.25μM, 62.5μM, 125μM, 250μM and 500μM). At the end of the experimental periods, cell viability was determined by the MTT method. JBD57 inhibited the growth of MM cell line RPMI 8226/S in a dose- and time-dependent manner. Cell viability decreased progressively with increasing concentrations of JBD57 as well as with increasing time periods. The IC50 (inhibitory concentration at 50%) was 125 μM at 72 hr. The viability of the MM cells after 72 hr incubation with JBD57 500μM was 33%, whereas 100% viability was observed when no drug was added. On the other hand, JBD57 did not affect cell viability of any of the other studied cell lines (uterine sarcoma, Jurkat, 1301 and HUVEC-C). JBD57 promotes a significant human MM cell death in a dose and time dependent manner but do not affect neither normal cell HUV-EC-C nor the tumoral cells MES-S, Jurkat and 1301, at least in the studied conditions. These results suggest that the potent antitumoral activity of JBD57 observed against MM cells could be potentially useful in the treatment of multiple myeloma.


Sign in / Sign up

Export Citation Format

Share Document