Synergetic effects of monoethanolamine (MEA) and post-deposition calcination on biosynthesized CeO2 nanostructures spin-coated on silicon substrate

Author(s):  
Saad Milad Ali Nsar ◽  
Zainuriah Hassan ◽  
Kuan Yew Cheong ◽  
Way Foong Lim
2012 ◽  
Vol 535-537 ◽  
pp. 362-367 ◽  
Author(s):  
Bao Zhu ◽  
Lian Jie Li ◽  
Qing Qing Sun ◽  
Hong Liang Lu ◽  
Shi Jin Ding ◽  
...  

Metal assisted chemical etching of heavily doped p-type Si(100) wafer was investigated in a solution containing HF and hydrogen peroxide using Pt nanoparticles as catalyst. The Pt nanoparticles were formed on Si(100) substrate by magnetron sputtering and post-deposition annealing. In a solution containing low concentration HF, formation of cylindrical nanoholes are unstable in the early stage of the etching process. After that, nanoholes with diameters ranging from 40 to 50 nm are stably formed in silicon substrate and the calculated growing rate is 60 nm/min. Instead, in a solution containing high concentration HF, cylindrical nanoholes with a diameter of about 10 nm can be stably produced in silicon substrate all the time and the growing rate is increased to as fast as 160 nm/min. In both cases, no Pt nanoparticles are observed at the bottom of the nanoholes. Finally, the underlying mechanisms of the aforementioned phenomena are also discussed.


2014 ◽  
Vol E97.C (7) ◽  
pp. 677-682
Author(s):  
Sung YUN WOO ◽  
Young JUN YOON ◽  
Jae HWA SEO ◽  
Gwan MIN YOO ◽  
Seongjae CHO ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
pp. 20-23
Author(s):  
Jaskiran Kaur ◽  
◽  
Surinder Singh ◽  

Author(s):  
J.G. van Hassel ◽  
Xiao-Mei Zhang

Abstract Failures induced in the silicon substrate by process marginalities or process mistakes need continuous attention in new as well as established technologies. Several case studies showing implant related defects and dislocations in silicon will be discussed. Depending on the electrical characteristics of the failure the localization method has to be chosen. The emphasis of the discussion will be on the importance of the right choice for further physical de-processing to reveal the defect. This paper focuses on the localization method, the de- processing technique and the use of Wright etch for subsequent TEM preparation.


Author(s):  
Younan Hua ◽  
Bingsheng Khoo ◽  
Henry Leong ◽  
Yixin Chen ◽  
Eason Chan ◽  
...  

Abstract In wafer fabrication, a silicon nitride (Si3N4) layer is widely used as passivation layer. To qualify the passivation layers, traditionally chemical recipe PAE (H3PO4+ HNO3) is used to conduct passivation pinhole test. However, it is very challenging for us to identify any pinholes in the Si3N4 layer with different layers underneath. For example, in this study, the wafer surface is Si3N4 layer and the underneath layer is silicon substrate. The traditional receipt of PAE cannot be used for passivation qualification. In this paper, we will report a new recipe using KOH solution to identify the pinhole in the Si3N4 passivation layer.


Sign in / Sign up

Export Citation Format

Share Document