Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions

2014 ◽  
Vol 454 ◽  
pp. 505-515 ◽  
Author(s):  
Daniel J. Miller ◽  
Sirirat Kasemset ◽  
Donald R. Paul ◽  
Benny D. Freeman
Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 380
Author(s):  
Yan Chen ◽  
Huiping Li ◽  
Weihai Pang ◽  
Baiqin Zhou ◽  
Tian Li ◽  
...  

Nanofiltration (NF) is a promising post-treatment technology for providing high-quality drinking water. However, membrane fouling remains a challenge to long-term NF in providing high-quality drinking water. Herein, we found that coupling pre-treatments (sand filtration (SF) and ozone–biological activated carbon (O3-BAC)) and NF is a potent tactic against membrane fouling while achieving high-quality drinking water. The pilot results showed that using SF+O3-BAC pre-treated water as the feed water resulted in a lower but a slowly rising transmembrane pressure (TMP) in NF post-treatment, whereas an opposite observation was found when using SF pre-treated water as the feed water. High-performance size-exclusion chromatography (HPSEC) and three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy determined that the O3-BAC process changed the characteristic of dissolved organic matter (DOM), probably by removing the DOM of lower apparent molecular weight (LMW) and decreasing the biodegradability of water. Moreover, amino acids and tyrosine-like substances which were significantly related to medium and small molecule organics were found as the key foulants to membrane fouling. In addition, the accumulation of powdered activated carbon in O3-BAC pre-treated water on the membrane surface could be the key reason protecting the NF membrane from fouling.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 553
Author(s):  
Dimitra C. Banti ◽  
Manassis Mitrakas ◽  
Petros Samaras

A promising solution for membrane fouling reduction in membrane bioreactors (MBRs) could be the adjustment of operating parameters of the MBR, such as hydraulic retention time (HRT), food/microorganisms (F/M) loading and dissolved oxygen (DO) concentration, aiming to modify the sludge morphology to the direction of improvement of the membrane filtration. In this work, these parameters were investigated in a step-aerating pilot MBR that treated municipal wastewater, in order to control the filamentous population. When F/M loading in the first aeration tank (AT1) was ≤0.65 ± 0.2 g COD/g MLSS/d at 20 ± 3 °C, DO = 2.5 ± 0.1 mg/L and HRT = 1.6 h, the filamentous bacteria were controlled effectively at a moderate filament index of 1.5–3. The moderate population of filamentous bacteria improved the membrane performance, leading to low transmembrane pressure (TMP) at values ≤2 kPa for a great period, while at the control MBR the TMP gradually increased reaching 14 kPa. Soluble microbial products (SMP), were also maintained at low concentrations, contributing additionally to the reduction of ΤΜP. Finally, the step-aerating MBR process and the selected imposed operating conditions of HRT, F/M and DO improved the MBR performance in terms of fouling control, facilitating its future wider application.


2020 ◽  
Vol 12 (18) ◽  
pp. 7385
Author(s):  
Liguo Wan ◽  
Ling Xiong ◽  
Lijun Zhang ◽  
Wenxi Lu

In this study, a new structure of high-load membrane bioreactor (HLB-MR) was used to treat urban sewage, and the effects of dissolved oxygen (DO) on biological flocculation and membrane pollution were researched. Parallel comparative experiments were used to investigate the concentration and recovery efficiency of organic matter, the bioflocculation effect, the content of extracellular polymer substance (EPS), the concentration of metal cations, membrane fouling status and microbial community structure in the reactors under the conditions of 1–2 and 6–8 mg/L. The flocculation efficiency of HLB-MR was 83% and 89% when DO was 1–2 and 6–8 mg/L, respectively. Under DO of 6–8 mg/L, the contents of bound and free EPS in the HLB-MR were 15.64 mg/gVSS and 8.71 mg/L, respectively. These values were significantly higher than those obtained when DO was 1–2 mg/L (11.83 mg/gVSS and 6.56 mg/L, respectively). Moreover, the concentrations of magnesium and aluminum in the concentrate of the HLB-MR were significantly higher when DO was 6–8 mg/L. Under higher DO concentration, there would be more EPS combined with metal cations, and thus fixed in the sludge substrate, the process of which promoted the bioflocculation. Changes in the transmembrane pressure (TMP) showed that the HLB-MR at a higher DO concentration suffered more serious membrane fouling. The species difference between the supernatant and precipitate was more significant under a higher DO concentration. The plankton species in the supernatant, e.g., norank_p__Saccharibacteria, norank_f__Neisseriaceae, and 12up, were likely to exacerbate membrane fouling. However, the species in the precipitate like Trichococcus, Ornithinibacter, and norank_f__Saprospiraceae may have a positive effect on bioflocculation.


2016 ◽  
Vol 7 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Xin Li ◽  
Yali Liu ◽  
Fangfang Liu ◽  
Aimin Liu ◽  
Qilan Feng

A membrane bioreactor (MBR) was used for treating biological aerated filter effluent in a municipal wastewater plant, and chemical phosphorus removal was accomplished in the MBR. The results showed that ferric chloride of 20 mg/L and aluminum sulfate of 30 mg/L were the optimal dosages for total phosphorus (TP) removal, and the TP removal efficiency was over 80%. In long-term continuous operations, both ferric chloride and aluminum sulfate effectively mitigated membrane fouling, with the corresponding growth rate of transmembrane pressure decreased to 0.08 and 0.067 kPa/d, respectively. Sludge particle sizes analysis demonstrated that the decrease of particle sizes lower than 50 μm was the main reason for membrane fouling control. Simultaneously, the proteins and polysaccharide (PS) concentrations in the MBR supernatant were analyzed, and the PS concentration significantly decreased to 2.02 mg/L at aluminum sulfate of 30 mg/L, indicating the flocculation of aluminum sulfate on PS was the main reason for mitigation of membrane fouling.


2015 ◽  
Vol 71 (5) ◽  
pp. 740-746
Author(s):  
G. S. Raspati ◽  
T. O. Leiknes

Fouling during coagulation–ceramic microfiltration of natural organic matter was investigated. Two process configurations (inline coagulation (IC) and tank coagulation (TC)) and two process conditions (types of coagulants–aluminum-based PAX and iron-based PIX–and G-values) were studied. The rate of irreversible fouling corresponding to the increase of initial transmembrane pressure after backwash of IC-PAX was lowest followed by TC-PAX and TC-PIX, while the performance of IC-PIX was found worst. The 1D and 2D fractal analysis revealed that flocs from IC were morphologically different from those of TC, leading to different filtration characteristics. The 3D fractal analysis revealed two groups of morphologically similar flocs: one led to successful filtration experiments, whereas the other led to unsuccessful ones. Cake porosity was found dependent on the floc morphology. Thus, such an approach was found complementary with fouling analysis by means of a membrane fouling model and minimization of fouling phenomenon was achieved by combining the two approaches.


2012 ◽  
Vol 65 (4) ◽  
pp. 737-742 ◽  
Author(s):  
V. Wei ◽  
M. Elektorowicz ◽  
J. A. Oleszkiewicz

Thousands of sparsely populated communities scatter in the remote areas of northern Canada. It is economically preferable to adopt the decentralized systems to treat the domestic wastewater because of the vast human inhabitant distribution and cold climatic conditions. Electro-technologies such as electrofiltration, elctrofloatation, electrocoagulation and electrokinetic separation have been applied in water and conventional wastewater treatment for decades due to the minimum requirements of chemicals as well as ease of operation. The membrane bioreactor (MBR) is gaining popularity in recent years as an alternative water/wastewater treatment technology. However, few studies have been conducted to hyphenate these two technologies. The purpose of this work is to design a novel electrically enhanced membrane bioreactor (EMBR) as an alternative decentralized wastewater treatment system with improved nutrient removal and reduced membrane fouling. Two identical submerged membranes (GE ZW-1 hollow fiber module) were used for the experiment, with one as a control. The EMBR and control MBR were operated for 4 months at room temperature (20 ± 2 °C) with synthetic feed and 2 months at 10 °C with real sewage. The following results were observed: (1) the transmembrane pressure (TMP) increased significantly more slowly in the EMBR and the interval between the cleaning cycles of the EMBR increased at least twice; (2) the dissolved chemical oxygen demand (COD) or total organic carbon (TOC) in the EMBR biomass was reduced from 30 to 51%, correspondingly, concentrations of the extracellular polymeric substances (EPS), the major suspicious membrane foulants, decreased by 26–46% in the EMBR; (3) both control and EMBR removed >99% of ammonium-N and >95% of dissolved COD, in addition, ortho-P removal in the EMBR was >90%, compared with 47–61% of ortho-P removal in the MBR; and (4) the advantage of the EMBR over the conventional MBR in terms of membrane fouling retardation and phosphorus removal was further demonstrated at an operating temperature of 10 °C when fed with real sewage. The EMBR system has the potential for highly automated control and minimal maintenance, which is particularly suitable for remote northern applications.


Desalination ◽  
2012 ◽  
Vol 294 ◽  
pp. 67-73 ◽  
Author(s):  
Jin-Hui Huang ◽  
Liang-Jing Shi ◽  
Guang-Ming Zeng ◽  
Xue Li ◽  
Song-Bao He ◽  
...  

2013 ◽  
Vol 777 ◽  
pp. 467-471 ◽  
Author(s):  
Liang Wang ◽  
Ying Chun Li ◽  
He Zhao ◽  
Zhao Hui Zhang ◽  
Bin Zhao ◽  
...  

Calcium ions, magnesium ions, and silicate were the main reasons for the high silting density index (SDI) of natural waters. Therefore, they posed serious membrane fouling problems in the nanofiltration (NF) system, which restricted the wide application of this excellent drinking water treatment technology. In this study, the sand filtration and the micro-flocculation/sand filtration hybrid process were investigated as the pretreatment process of NF for SDI reduction. Compared with the sand filtration, the hybrid process of micro-flocculation/sand filtration was more effective for SDI reduction. When polyaluminium chloride (PAC) was used as the flocculant at a dose of 10 mg/L and the filtration rate of the sand filter was controlled at 10 m/h, the SDI value in the effluent of the pretreatment process maintained below 3. As a result, the subsequent NF system stably ran for one year. 68% CODMn was removal by NF. The membrane fouling during the operation was quite slight as the transmembrane pressure (TMP) increased by 17% after one-year use. Chemical cleaning with sodium tripolyphosphate (2%) and sodium dodecyl benzene sulfonate (0.25%) at 6 months interval could effectively recover the flux loss of the NF membrane.


Sign in / Sign up

Export Citation Format

Share Document