Ball milling induced strong polarization electric fields in Cu3B2O6 crystals for high efficiency piezocatalysis

Nano Energy ◽  
2021 ◽  
pp. 106890
Author(s):  
Xiaomin Liao ◽  
Huiyuan Xie ◽  
Biru Liao ◽  
Sen Hou ◽  
Yang Yu ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zainab Gholami ◽  
Farhad Khoeini

AbstractThe main contribution of this paper is to study the spin caloritronic effects in defected graphene/silicene nanoribbon (GSNR) junctions. Each step-like GSNR is subjected to the ferromagnetic exchange and local external electric fields, and their responses are determined using the nonequilibrium Green’s function (NEGF) approach. To further study the thermoelectric (TE) properties of the GSNRs, three defect arrangements of divacancies (DVs) are also considered for a larger system, and their responses are re-evaluated. The results demonstrate that the defected GSNRs with the DVs can provide an almost perfect thermal spin filtering effect (SFE), and spin switching. A negative differential thermoelectric resistance (NDTR) effect and high spin polarization efficiency (SPE) larger than 99.99% are obtained. The system with the DV defects can show a large spin-dependent Seebeck coefficient, equal to Ss ⁓ 1.2 mV/K, which is relatively large and acceptable. Appropriate thermal and electronic properties of the GSNRs can also be obtained by tuning up the DV orientation in the device region. Accordingly, the step-like GSNRs can be employed to produce high efficiency spin caloritronic devices with various features in practical applications.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022068
Author(s):  
Xiaohui Wang ◽  
Chunyan Song ◽  
Xueying Xie ◽  
Nan Zhang ◽  
Ruiqing Guo ◽  
...  

Abstract As a high-efficiency, low-cost, convenient and environmentally friendly sterilization technology, electrochemical disinfection has developed rapidly in recent years. Electrochemical sterilization is an environmentally friendly sterilization technology. The research progress of this technology in the recent 30 years in sterilization mechanism and electrode materials is summarized. The mechanism of electrochemical sterilization includes the chemical effects of active chlorine, active intermediates, copper or silver ions, and the physical effects of electric fields; the electrode materials used are titanium anode, carbon cathode, and anode. The article combined with electrochemical equipment in a thermal power plant cold open circulating cooling water treatment experiment. Experimental research found that under the conditions of current density of 120A/m2, residence time of 10s, and electrode spacing of 1.8cm, the bactericidal effect can reach 97%. Under certain experimental conditions and a certain period of time, the total number of heterogeneous bacteria in the circulating cooling water after treatment can be effectively inhibited.


2021 ◽  
Author(s):  
Zhijun Hu ◽  
Xinyu Cao ◽  
Guanhong Huang ◽  
Daliang Guo

Abstract Here, a new pretreatment method has been developed to produce CNFs from micro-fibrillated cellulose (MFC) by supercritical CO 2 pretreatment followed with ball-milling (SCB). MFC was obtained from cotton stalk by chemical purification.Experimental factors were controlled to enhance the properties of SCB-CNF, meanwhile a comparative study was conducted with the method of TEMPO oxidation and microfluid homogenization (TMH). Compared to TMH-CNF, the SCB-CNF has such advantages as Energy saving, high efficiency and environmental protection, indicating a wide application in heat-resistant materials, load materials and other fields. The solid yields of P-MFC after supercritical CO 2 pretreatment gradually decreased together with the temperature and the reaction time. Scanning electron microscope (SEM) images of the SCB-CNF and TMH-CNF show that the morphology of the SCB-CNF was basically acicular but that of the TMH-CNF was mainly soft fibrous. The SCB-CNF is smaller in width and shorter in length, and its size is between CNC and CNF. Thermal gravimetric results suggest that the thermal stability of the SCB-CNF was substantially higher than those of the TMH-CNF. XRD results indicate that the crystallinity showed an initial increasing trend and then declined with increasing temperature and reaction time, and the crystallinity value of SCB-CNF was larger than that of CNFs. The smaller SCB-CNF became rougher and had a larger surface area. High crystallinity make good thermal stability, short and coarse fiber, easier to disperse than CNF, less energy consumption for dispersion, better than 3D mesh. It can be widely used in polymer composites, reinforcing agents, membrane materials and other fields.


2021 ◽  
Author(s):  
Meiyan Wu ◽  
Keyu Liao ◽  
Chao Liu ◽  
Guang Yu ◽  
Mehdi Rahmaninia ◽  
...  

Abstract Formic acid/choline chloride (F-DES), one of high-efficiency deep eutectic solvents (DES) for lignocellulose pretreatment, has great potential in the production of nanocellulose (NC). In this work, the integrated preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) was developed using F-DES pretreatment and the followed ball milling. Then, the properties of the resultant NC products (F-NC) were comprehensively investigated. The NC samples obtained from direct ball milling and urea/choline chloride (U-DES) plus ball milling (i.e. B-NC, and U-NC, accordingly) were used for comparison. Characterization results showed that similar to U-DES, F-DES pretreatment could effectively enhance the fibrillation of cellulose and facilitate the followed ball milling for the production of NC, and the yields of NC (CNCs plus CNFs) were over 95%. Yet, compared with B-NC and U-NC, F-NC with surface ester groups had better ability to stabilize the oil/water interface for further preparation of oil-in-water Pickering emulsion. In addition, F-DES has lower viscosity than U-DES. The recovery rate of F-DES could reach 92% after three cycles, and the recycled F-DES without obvious increase of viscosity showed better reusability to make the whole process clean and sustainable.


2021 ◽  
Vol 118 (45) ◽  
pp. e2115367118
Author(s):  
Chao Wu ◽  
Ajinkya A. Deshmukh ◽  
Omer Yassin ◽  
Jierui Zhou ◽  
Abdullah Alamri ◽  
...  

Flexible large bandgap dielectric materials exhibiting ultra-fast charging-discharging rates are key components for electrification under extremely high electric fields. A polyoxafluoronorbornene (m-POFNB) with fused five-membered rings separated by alkenes and flexible single bonds as the backbone, rather than conjugated aromatic structure typically for conventional high-temperature polymers, is designed to achieve simultaneously high thermal stability and large bandgap. In addition, an asymmetrically fluorinated aromatic pendant group extended from the fused bicyclic structure of the backbone imparts m-POFNB with enhanced dipolar relaxation and thus high dielectric constant without sacrificing the bandgap. m-POFNB thereby exhibits an unprecedentedly high discharged energy density of 7.44 J/cm3 and high efficiency at 150 °C. This work points to a strategy to break the paradox of mutually exclusive constraints between bandgap, dielectric constant, and thermal stability in the design of all-organic polymer dielectrics for harsh condition electrifications.


2021 ◽  
Vol 2021.58 (0) ◽  
pp. A023
Author(s):  
Hayato TANNO ◽  
Hisashi YAMAMOTO ◽  
Hitoshi NISHIDA ◽  
Noboru MOMOSE ◽  
Toshimasa CHAKI

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Priscila S. Corrêa ◽  
Wilson G. Morais Júnior ◽  
António A. Martins ◽  
Nídia S. Caetano ◽  
Teresa M. Mata

Several microalgae species have been exploited due to their great biotechnological potential for the production of a range of biomolecules that can be applied in a large variety of industrial sectors. However, the major challenge of biotechnological processes is to make them economically viable, through the production of commercially valuable compounds. Most of these compounds are accumulated inside the cells, requiring efficient technologies for their extraction, recovery and purification. Recent improvements approaching physicochemical treatments (e.g., supercritical fluid extraction, ultrasound-assisted extraction, pulsed electric fields, among others) and processes without solvents are seeking to establish sustainable and scalable technologies to obtain target products from microalgae with high efficiency and purity. This article reviews the currently available approaches reported in literature, highlighting some examples covering recent granted patents for the microalgae’s components extraction, recovery and purification, at small and large scales, in accordance with the worldwide trend of transition to bio-based products.


1999 ◽  
Vol 558 ◽  
Author(s):  
Toshimichi Ito ◽  
Masaki Nishimura

ABSTRACTHighly efficient electron emitting diodes have been fabricated using single-crystalline diamond films epitaxially grown on high-pressure synthesized (100) diamond. These diodes have an internal electrode of a graphitized layer buried below an overgrown diamond layer with a very high resistivity, the structure of which is formed by a combination of heavy ionimplantation and overgrowth techniques. The efficiency of electron emissions from sufficiently hydrogenated p-type diamond surfaces reached 100% in the best case. It is found that H atoms can passivate internal defects created during the ion implantation process. The mechanism of the high efficiency is discussed in relation to electron-hole creations in the thin diamond layer under extremely high electric fields of 107 V/cm.


Sign in / Sign up

Export Citation Format

Share Document