The Impact Ionization MOSFET (IMOS) as low-voltage optical detector

Author(s):  
M. Schlosser ◽  
P. Iskra ◽  
U. Abelein ◽  
H. Lange ◽  
H. Lochner ◽  
...  
2006 ◽  
Vol 955 ◽  
Author(s):  
Shengkun Zhang ◽  
X. Zhou ◽  
Wubao Wang ◽  
R. R. Alfano ◽  
A. M. Dabiran ◽  
...  

ABSTRACTIn this work, electro-luminescence (EL) of a AlGaN p-i-n diode have been investigated in both avalanche and injection modes. The active i-region of the diode consists of Al0.1Ga0.9N/Al0.15Ga0.85N MQWs. Strong interband luminescence from the Al0.1Ga0.9N active layers was observed when operating the device in both avalanche and injection modes. The threshold voltage for avalanche breakdown is as low as 9 V. This indicates that the impact ionization coefficient of electrons is greatly enhanced in these Al0.1Ga0.9N/Al0.15Ga0.85N MQWs comparing to AlGaN bulk materials. Polarization-induced electric fields in the Al0.1Ga0.9N well layers are believed to be responsible for the enhancement of the ionization coefficient. In a control sample that has higher defect density, the electroluminescence was dominated by long-wavelength emissions, which results from impact ionizations of the defect levels.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1688 ◽  
Author(s):  
C. Birk Jones ◽  
Matthew Lave ◽  
William Vining ◽  
Brooke Marshall Garcia

An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home- and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Yin ◽  
Lian Liu ◽  
Yashu Zang ◽  
Anni Ying ◽  
Wenjie Hui ◽  
...  

AbstractHere, an engineered tunneling layer enhanced photocurrent multiplication through the impact ionization effect was proposed and experimentally demonstrated on the graphene/silicon heterojunction photodetectors. With considering the suitable band structure of the insulation material and their special defect states, an atomic layer deposition (ALD) prepared wide-bandgap insulating (WBI) layer of AlN was introduced into the interface of graphene/silicon heterojunction. The promoted tunneling process from this designed structure demonstrated that can effectively help the impact ionization with photogain not only for the regular minority carriers from silicon, but also for the novel hot carries from graphene. As a result, significantly enhanced photocurrent as well as simultaneously decreased dark current about one order were accomplished in this graphene/insulation/silicon (GIS) heterojunction devices with the optimized AlN thickness of ~15 nm compared to the conventional graphene/silicon (GS) devices. Specifically, at the reverse bias of −10 V, a 3.96-A W−1 responsivity with the photogain of ~5.8 for the peak response under 850-nm light illumination, and a 1.03-A W−1 responsivity with ∼3.5 photogain under the 365 nm ultraviolet (UV) illumination were realized, which are even remarkably higher than those in GIS devices with either Al2O3 or the commonly employed SiO2 insulation layers. This work demonstrates a universal strategy to fabricate broadband, low-cost and high-performance photo-detecting devices towards the graphene-silicon optoelectronic integration.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


1990 ◽  
Vol 57 (3) ◽  
pp. 249-251 ◽  
Author(s):  
H. Kuwatsuka ◽  
T. Mikawa ◽  
S. Miura ◽  
N. Yasuoka ◽  
Y. Kito ◽  
...  

2001 ◽  
Vol 89 (1) ◽  
pp. 327-331
Author(s):  
Eugenio F. Prokhorov ◽  
Jesus González-Hernández ◽  
Nikolai B. Gorev ◽  
Inna F. Kodzhespirova ◽  
Yury A. Kovalenko

2018 ◽  
Vol 225 ◽  
pp. 04024 ◽  
Author(s):  
Abid Ali Jamali ◽  
Nursyarizal Mohd Nor ◽  
Taib Ibrahim ◽  
Mohd Fakhizan Romlie ◽  
Zahid Khan

This paper evaluates the potential of Quaid-e-Azam Solar Park (QASP), Pakistan and examines its impact on distribution networks. To estimate the PV plant yields, solar park’s historical hourly weather data from the years 2000 - 2014 is used. For handling of such huge data, the yearly data is partitioned into four seasons. Further, the seasonal data is modelled by using Beta Probability Density Function (PDF) and a 24 hour solar curve for each season is generated. The solar farm power outputs are tested in IEEE 33 bus distribution network by using time-varying seasonal hourly loads, meanwhile system losses and bus voltages are calculated. The results show that with the passage of time, the impact of solar PV power on reduction of system losses gradually decrease due to yearly degradation of PV module efficiency. System losses at end of PV farm life are 10 - 12% higher than those losses as in the first year. Furthermore, low voltage buses also pose to risk as system voltages also start to decrease. From the analysis, it is suggested that for maintaining the quality of network, time varying detailed assessments should be performed during the calculations of sizing of distributed generation.


Sign in / Sign up

Export Citation Format

Share Document