On the laser forming process of copper/aluminum bi-metal sheets with a functional thickness

2022 ◽  
Vol 149 ◽  
pp. 107870
Author(s):  
S. Reza Ghoreishi ◽  
Masoud Mahmoodi
2020 ◽  
Vol 4 (4) ◽  
pp. 44
Author(s):  
Adam L. Bachmann ◽  
Michael D. Dickey ◽  
Nathan Lazarus

Lasers can be used to bend 2D metal sheets into complex 3D objects in a process called ‘laser forming.’ Laser forming bends metal sheets by locally heating the sheets to generate plastic strains and is an established metal bending technology in the shipbuilding industry. Recent studies have investigated the laser forming of thin metal parts as a complementary rapid prototyping technology to metal 3D printing. This review discusses the laser forming process, beginning with the mechanisms before covering various design considerations. Laser forming for the rapid manufacturing of metal parts is then reviewed, including the recent advances in process planning, before highlighting promising future research directions.


2002 ◽  
Vol 124 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Jin Cheng ◽  
Y. Lawrence Yao

Laser forming of steel is a hot forming process with high heating and cooling rate, during which strain hardening, dynamic recrystallization, and phase transformation take place. Numerical models considering strain rate and temperature effects only usually give unsatisfactory results when applied to multiscan laser forming operations. This is mainly due to the inadequate constitutive models employed to describe the hot flow behavior. In this work, this limitation is overcome by considering the effects of microstructure change on the flow stress in laser forming processes of low carbon steel. The incorporation of such flow stress models with thermal mechanical FEM simulation increases numerical model accuracy in predicting geometry change and mechanical properties.


2008 ◽  
Vol 375-376 ◽  
pp. 333-337
Author(s):  
Li Jun Yang ◽  
Yang Wang

Laser forming of metal sheet is a forming technology of sheet without a die that the sheet is deformed by internal thermal stress induced by partially irradiation of a laser beam. In this paper, the bending behavior of common stainless steel 1Cr18Ni9 sheet is studied after being irradiated by straight line with a Nd:YAG pulsed laser beam. The aim of the investigation is to find out the relationship of the physical behaviors of heat affected zone (HAZ) with the pulse parameters of the laser. Through the analysis of the fundamental theory of pulsed laser affected, this paper shows the affected characteristics of metal sheet with pulsed laser forming. The results show that the microstructure of HAZ of pulsed laser scanned is layered, and the micro-hardness is improved than that in matrix. The microstructures show that the deformed grain structure is inhomogeneous, that caused the grain sizes and grain orientations in HAZ to become different. By qualitative analysis of experimental result, the conclusion obtained may provide basis for theoretical investigation and possible industrial application of laser forming process in the future.


2006 ◽  
Vol 129 (6) ◽  
pp. 1035-1044 ◽  
Author(s):  
A. J. Birnbaum ◽  
P. Cheng ◽  
Y. L. Yao

Although considerable effort has gone into characterizing the laser forming process in terms of process parameters and conditions, there has been little emphasis on the effects of the mechanical and thermal constraints introduced by the clamping method utilized for a desired application. This research suggests means for investigating and predicting the resulting geometry of a specimen due to laser operation in close proximity to an array of imposed thermo-mechanical constraints for both the single and multiple scan cases; specifically, the resulting average bending angle as well as bending angle variations throughout the part. This is accomplished by initially only considering these effects on the thermal field. Conclusions are then drawn about the nature of the mechanical effects. These conclusions are validated through numerical simulation as well as physical experimentation. An analytical solution of the thermal problem is also presented for further validation of the temperature field as a constrained edge is approached.


2018 ◽  
Vol 190 ◽  
pp. 12008
Author(s):  
Benjamin Clausius ◽  
Petra Maier

Flanging is a widespread method in the sheet metal working industry to connect same or different materials by forming. Especially the sealing technology makes high demands on the flanging process: a low sheet thickness of the inner eyelet is necessary for proper sealing. The outer edges of the neck rings are mostly manufactured by shear cutting. The quality of the cut surface and the level of the local strain hardening influence decisively the limit of the flanging process by possible cracking. This paper is focused on the dependencies of these factors regarding thin metal sheets of different materials with a thickness down to 100 μm. It could be shown that strain hardening has a stronger effect on the process limits compared to the notch effect of the sheet edges when using standard values for the clearance of the shear cutting tool. Furthermore, a process is investigated with a partial inductive short-time heat treatment of the most deformed edge area. Due to the low thickness of the material and low heat capacities related thereto, it is possible to integrate a recrystallization annealing as single step into the forming process. As a result, the strain hardening can be removed from the affected zone directly between two forming steps to increase the process limits.


2011 ◽  
Vol 49 (9-10) ◽  
pp. 1101-1110 ◽  
Author(s):  
Z.L. Lu ◽  
D.C. Li ◽  
Z.Q. Tong ◽  
Q.P. Lu ◽  
M.M. Traore ◽  
...  

2017 ◽  
Vol 749 ◽  
pp. 154-160
Author(s):  
Khanh Dien Le ◽  
Tan Hung Nguyen ◽  
Ngoc Huy Tran ◽  
Thanh Son Le ◽  
Huy Bich Nguyen ◽  
...  

Single Point Incremental Forming (SPIF) is a recent technology of forming sheet in several decades. Nowadays, SPIF technology is still continued to be studied, applied and ameliorated in sheet manufacturing in industry. However one of the difficulties of the technology is the forming angle is still small (smaller than 800 according the properties of metal sheets). This paper recommends a measure of increasing the plasticity of the sheet by heating in time of forming by SPIF technology. Naturally, the plasticity of metal sheet increases by the temperature of the material in forming process with its limitation and constraint. The paper represents the effect of heating metal sheet through the empirical process of SPIF technology directed by the design of experiment (DOE). The analyses of the results of experimental process is applied to show the effect of heating to the precision of Titanium sheet. Finally, some private opinions about the heating in SPIF are also mentioned as a very tiny contribution of the research for the new technology.


Author(s):  
Wei Shen ◽  
Renjun Yan ◽  
Shuangying Li

Ship hull structures are fabricated by curved thick plates before they are welded together. There are traditional methods such as, line heating and laser-forming methods for plate bending. However, it is recognized that the hot-forming technology causes a series of troubles on doubly or multiple curved plates. Multi-point forming mechanism with square press heads is a new forming process for three-dimensional ship hull plate. Cold-forming has a high dimensional accuracy but results in spring-back. The spring-back process of curved thick plates in the finite element method is analyzed and the predicted results are compared with the test results in the present paper. To ensure the forming precision, the successive approximation method is also developed and verified to control the spring-back.


Sign in / Sign up

Export Citation Format

Share Document