Influence the oxygen flow rate on the film thickness, structural, optical and photoluminescence behavior of DC sputtered NiO thin films

2019 ◽  
Vol 568 ◽  
pp. 6-12 ◽  
Author(s):  
Ahmed H. Hammad ◽  
M.Sh. Abdel-wahab ◽  
Sajith Vattamkandathil ◽  
Akhalakur Rahman Ansari
JOM ◽  
2016 ◽  
Vol 68 (6) ◽  
pp. 1647-1652 ◽  
Author(s):  
D. Jhansi Rani ◽  
A. GuruSampath Kumar ◽  
T. Sofi Sarmash ◽  
K. Chandra Babu Naidu ◽  
M. Maddaiah ◽  
...  

2013 ◽  
Vol 662 ◽  
pp. 453-458
Author(s):  
Kyoo Ho Kim ◽  
Eun Soo Lee ◽  
Seong Heon Lee

Polycrystalline Al-doped ZnO (AZO) thin films with a thickness of 1300 Å were grown on Corning 1737 glass by pulsed laser deposition (PLD) at a low substrate temperature. The presence of oxygen gas during deposition led to a remarkable enhancement of the (002) c-axis preferential orientation as well as increased crystallite size. Highly transparent films with a transmittance of 85% could be obtained by controlling the oxygen flow rate, while causing a Burstein-Moss shift toward a shorter wavelength as well. The resistivities of the films were found to be functions of both the oxygen flow rate and substrate temperature, with the lowest value being 2.3 x 10-4 Ωcm (18Ω/sq sheet resistance). It was found that both the oxygen flow rate and substrate temperature are crucial in order to grow superior device quality films with an appropriate degree of crystallinity, less surface roughness, high transmittance and low resistivity, which are characteristics of great technological importance.


2013 ◽  
Vol 667 ◽  
pp. 333-337
Author(s):  
S. Ahmad ◽  
N.D. Md Sin ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

Zinc Oxide (ZnO) thin films were deposited on thermally oxidized SiO2 by varying the oxygen flow rate. The deposition process were done using radio frequency (RF) magnetron sputtering at various oxygen flow rate ranging from 0 to 40 sccm. The surface morphology and crystallinity were analyzed by field emission scanning electron microscopy (FESEM) and X-Ray Diffractometer (XRD) respectively. The average thickness and deposition rate decreases with an increase of oxygen content. The grain size was measured by FESEM and it was found that it is also decreasing with the increased of oxygen flow rate. The films grown with 10 sccm oxygen shows the highest (002) peak however it is expected that the sample deposited with 40 sccm oxygen exhibit the highest sensitivity toward NH3 gas due to the highest surface to volume ratio.


2014 ◽  
Vol 1024 ◽  
pp. 64-67 ◽  
Author(s):  
Nur Syahirah Kamarozaman ◽  
Muhamad Uzair Shamsul ◽  
Sukreen Hana Herman ◽  
Wan Fazlida Hanim Abdullah

The paper presents the memristive behavior of sputtered titania thin films on ITO substrate. Titania thin films were deposited by RF magnetron sputtering method while varying the oxygen flow rate of (O2/ (O2 + Ar) x100 = 10, 20 and 30 %) during deposition process. The effect of oxygen flow rate to the structural properties was studied including the physical thickness, and also the effect towards switching behavior. It was found that sample deposited at 20 % oxygen flow rate gave better memristive behavior compared to other samples, with larger ROFF/RON ratio of 9. The characterization of memristive behavior includes the effect of electroforming process and successive of I-V measurements are discussed.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1604
Author(s):  
Svitlana Petrovska ◽  
Ruslan Sergiienko ◽  
Bogdan Ilkiv ◽  
Takashi Nakamura ◽  
Makoto Ohtsuka

Amorphous aluminum-doped indium tin oxide (ITO) thin films with a reduced indium oxide content of 50 mass% were manufactured by co-sputtering of ITO and Al2O3 targets in a mixed argon–oxygen atmosphere onto glass substrates preheated at 523 K. The oxygen gas flow rate and heat treatment temperature effects on the electrical, optical and structural properties of the films were studied. Thin films were characterized by means of a four-point probe, ultraviolet–visible-infrared (UV–Vis-IR) spectroscopy and X-ray diffraction. Transmittance of films and crystallization temperature increased as a result of doping of the ITO thin films by aluminum. The increase in oxygen flow rate led to an increase in transmittance and hindering of the crystallization of the aluminum-doped indium saving ITO thin films. It has been found that the film sputtered under optimal conditions showed a volume resistivity of 713 µΩcm, mobility of 30.8 cm2/V·s, carrier concentration of 2.9 × 1020 cm−3 and transmittance of over 90% in the visible range.


2017 ◽  
Vol 17 (10) ◽  
pp. 7623-7627
Author(s):  
Shinho Cho ◽  
Christian R Beynis ◽  
James Parry ◽  
Hao Zeng

Sign in / Sign up

Export Citation Format

Share Document