Stilbene biosynthesis in the needles of spruce Picea jezoensis

2016 ◽  
Vol 131 ◽  
pp. 57-67 ◽  
Author(s):  
K.V. Kiselev ◽  
V.P. Grigorchuk ◽  
Z.V. Ogneva ◽  
A.R. Suprun ◽  
A.S. Dubrovina
2019 ◽  
Vol 234-235 ◽  
pp. 133-137 ◽  
Author(s):  
K.V. Kiselev ◽  
V.P. Grigorchuk ◽  
Z.V. Ogneva ◽  
A.R. Suprun ◽  
A.S. Dubrovina

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Alessio Valletta ◽  
Lorenzo Maria Iozia ◽  
Francesca Leonelli

Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1276
Author(s):  
Olga A. Aleynova ◽  
Andrey R. Suprun ◽  
Nikolay N. Nityagovsky ◽  
Alexandra S. Dubrovina ◽  
Konstantin V. Kiselev

Plant endophytes are known to alter the profile of secondary metabolites in plant hosts. In this study, we identified the main bacterial and fungal representatives of the wild grape Vitis amurensis Rupr. microbiome and investigated a cocultivation effect of the 14 endophytes and the V. amurensis cell suspension on biomass accumulation and stilbene biosynthesis. The cocultivation of the V. amurensis cell culture with the bacteria Agrobacterium sp., Bacillus sp., and Curtobacterium sp. for 2 weeks did not significantly affect the accumulation of cell culture fresh biomass. However, it was significantly inhibited by the bacteria Erwinia sp., Pantoea sp., Pseudomonas sp., and Xanthomonas sp. and fungi Alternaria sp., Biscogniauxia sp., Cladosporium sp., Didymella sp. 2, and Fusarium sp. Cocultivation of the grapevine cell suspension with the fungi Didymella sp. 1 and Trichoderma sp. resulted in cell death. The addition of endophytic bacteria increased the total stilbene content by 2.2–5.3 times, while the addition of endophytic fungi was more effective in inducing stilbene accumulation by 2.6–16.3 times. The highest content of stilbenes in the grapevine cells cocultured with endophytic fungi was 13.63 and 13.76 mg/g of the cell dry weight (DW) after cultivation with Biscogniauxia sp. and Didymella sp. 2, respectively. The highest content of stilbenes in the grapevine cells cocultured with endophytic bacteria was 4.49 mg/g DW after cultivation with Xanthomonas sp. The increase in stilbene production was due to a significant activation of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) gene expression. We also analyzed the sensitivity of the selected endophytes to eight antibiotics, fluconazole, and trans-resveratrol. The endophytic bacteria were sensitive to gentamicin and kanamycin, while all selected fungal strains were resistant to fluconazole with the exception of Cladosporium sp. All endophytes were tolerant of trans-resveratrol. This study showed that grape endophytes stimulate the production of stilbenes in grape cell suspension, which could further contribute to the generation of a new stimulator of stilbene biosynthesis in grapevine or grape cell cultures.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mario Ciaffi ◽  
Anna Rita Paolacci ◽  
Marco Paolocci ◽  
Enrica Alicandri ◽  
Valentina Bigini ◽  
...  

Abstract Background To limit the impact of the downy mildew disease of grapevine and reduce the need to recur to chemical treatments, an effective strategy might be recovering adaptive resistance traits in both cultivated and wild V. vinifera germplasm. Considering that stilbenes represent the most important class of phytoalexins in the Vitaceae, the constitutive expression and transcriptional activation of all the functional members of the stilbene synthase gene family were analysed in a group of nine grapevine genotypes following artificial infection with the oomycete Plasmopara viticola, the causal agent of the disease. In addition, in the same genotypes we analyzed the expression of genes encoding for two transcription factors involved in the transcriptional regulation of the stilbene synthase genes, namely VvMYB14 and VvMYB15, and of genes encoding for chalcone synthases. Results Downy mildew incidence and severity ranged from nihil to high in the grapevine genotypes considered, being low to moderate in a subgroup of V. vinifera genotypes. The constitutive expression of the stilbene synthase genes as well as the extent of their transcriptional activation following P. viticola inoculation appeared to be inversely related to the proneness to develop disease symptoms upon infection. In a specular manner, following P. viticola inoculation all the chalcone synthase genes were up-regulated in the susceptible grapevine genotypes and down-regulated in the resistant ones. The infection brought by P. viticola appeared to elicit a co-ordinated and sequential transcriptional activation of distinct stilbene synthase genes subsets, each of which may be regulated by a distinct and specific MYB transcription factor. Conclusions The present results suggest that the induction of stilbene biosynthesis may contribute to the basal immunity against the downy mildew of grapevine, thus representing an adaptive resistance trait to recover, in both cultivated and wild V. vinifera germplasm. During the early stages of P. viticola infection, an antagonistic interaction between flavonol and stilbene biosynthesis might occur, whose outcome might determine the subsequent extent of disease symptoms. Further studies are needed to decipher the possible regulatory mechanisms involved in the antagonistic crosstalk between these two metabolic pathways in resistant and susceptible genotypes in response to P. viticola.


2013 ◽  
Vol 25 (10) ◽  
pp. 4135-4149 ◽  
Author(s):  
Janine Höll ◽  
Alessandro Vannozzi ◽  
Stefan Czemmel ◽  
Claudio D'Onofrio ◽  
Amanda R. Walker ◽  
...  

2000 ◽  
Vol 124 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Hélène Chiron ◽  
Alain Drouet ◽  
François Lieutier ◽  
Hans-Dieter Payer ◽  
Dieter Ernst ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 33 (32) ◽  
pp. no-no
Author(s):  
Reiko Tanaka ◽  
Kazuhiro Tsujimoto ◽  
Yasuko In ◽  
Toshimasa Ishida ◽  
Shunyo Matsunaga ◽  
...  
Keyword(s):  

2020 ◽  
Vol 25 ◽  
pp. 02013
Author(s):  
Eugene Lutsky ◽  
Svyatoslav Fedorovich ◽  
Vadim Vyalkov ◽  
Maria Sundyreva

Stilbenes represent a considerable practical interest in relation to their benifits to the human health. Callus culture of the grape, which is a natural producer of stilbenes, can serve as an effective source of these compounds. Grape’s resistance to biotic environmental stress conditions is associated with the synthesis and conversion of stilbenes, therefore the aim of the current study was to determine an interrelation between the tolerance of grape varieties to downy mildew and stilbene biosynthesis in the callus culture. Obtained results showed that there was no link between variety’s tolerance to downy mildew and content of stilbenes, chalcones and phenoloxydising enzymes in callus. Presence of the stress impact is a necessary condition for the initiation of the variety-specific synthesis of stilbenes. Callus of varieties, in which stilbenes content was higher, was characterized by a lowered expression of the chalcone synthase and chalcone isomerase relative to expression of genes of the stilbene synthase and phenylalanine ammonia liase, which confirms an interrelation between reduced competition for the substrate between two biosynthesis branches of chalcones and stilbenes with production of the latter.


Sign in / Sign up

Export Citation Format

Share Document