Investigating the impact models for nanoparticles manipulation based on atomic force microscope (according to contact mechanics)

2019 ◽  
Vol 344 ◽  
pp. 17-26 ◽  
Author(s):  
M.H. Korayem ◽  
H. Khaksar
Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

The use of the atomic force microscope (AFM) as a tool to manipulate matter at the nanoscale has received a large amount of research interest in the last decade. Experimental and theoretical investigations have showed that the AFM cantilever can be used to push, cut, or pull nanosamples. However, AFM-based nanomanipulation suffers a lack of repeatability and controllability because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In this paper, we will investigate the effects of the tip-sample interactions on nanopushing manipulation. We propose the use of an interaction model based on the Maugis–Dugdale contact mechanics. The efficacy of the proposed model to reproduce experimental observations is demonstrated via numerical simulations. In addition, the coupling between adhesion and friction at the nanoscale is analyzed.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4539
Author(s):  
Abraham Tsitlakidis ◽  
Anastasia S. Tsingotjidou ◽  
Aristeidis Kritis ◽  
Angeliki Cheva ◽  
Panagiotis Selviaridis ◽  
...  

This study aims to investigate the influence of isocitrate dehydrogenase gene family (IDH) mutations, World Health Organization (WHO) grade, and mechanical preconditioning on glioma and adjacent brain elasticity through standard monotonic and repetitive atomic force microscope (AFM) nanoindentation. The elastic modulus was measured ex vivo on fresh tissue specimens acquired during craniotomy from the tumor and the peritumoral white matter of 16 diffuse glioma patients. Linear mixed-effects models examined the impact of tumor traits and preconditioning on tissue elasticity. Tissues from IDH-mutant cases were stiffer than those from IDH-wildtype ones among anaplastic astrocytoma patients (p = 0.0496) but of similar elasticity to IDH-wildtype cases for diffuse astrocytoma patients (p = 0.480). The tumor was found to be non-significantly softer than white matter in anaplastic astrocytomas (p = 0.070), but of similar elasticity to adjacent brain in diffuse astrocytomas (p = 0.492) and glioblastomas (p = 0.593). During repetitive indentation, both tumor (p = 0.002) and white matter (p = 0.003) showed initial stiffening followed by softening. Stiffening was fully reversed in white matter (p = 0.942) and partially reversed in tumor (p = 0.015). Tissue elasticity comprises a phenotypic characteristic closely related to glioma histopathology. Heterogeneity between patients should be further explored.


2008 ◽  
Vol 381-382 ◽  
pp. 549-552
Author(s):  
Tim Bao

Your 32nm is different from my 32nm! The paradoxical statement reflects one of the most essential debates in the field of nanoscale dimension metrology for process control in the modern nanoelectronic manufacturing industry. This baffling debate is all about accuracy and traceability of dimension measurement systems used on production floors. As the circuit geometry and density continues to scale to the 45nm node and below, the metrology bias and uncertainty play a more significant role, and the characterization becomes more difficult. This article assesses the capability of atomic force microscope (AFM) as an accurate inline calibration metrology tool and the correlation of AFM measurement to NIST traceable standards. It introduces the methodology of adopting AFM as a traceable reference tool for CD SEM and optical scatterometry used in inline process control. The focus is on height, linewidth, and pitch calibrations due to their critical but challenging roles for process control in today’s nanoelectronic manufacturing. Care must be taken to minimize the impact from factors that affect the traceability and accuracy in the AFM system, including tip width calibration, tip wear, tip shape effect, contamination, and linewidth roughness.


2012 ◽  
Vol 1474 ◽  
Author(s):  
Christophe Harder ◽  
L. Berlu ◽  
B. Reneaume

ABSTRACTCorrosion mechanisms take place at the extreme surface of materials before spreading in the bulk. In this way, in situ surface characterization techniques as scanning probe microscopy (Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM)) allow the observations of the very initial reaction steps.To achieve that goal, an environmental cell has been designed ; it is able to integrate either an atomic force microscope (AFM) or a scanning tunneling microscope (STM). This cell can resist to internal pressures ranging from 10-5 to 20 atm. Heterogeneous “solid – gas” reactions that only occur with pressures above several atmospheres, can then be studied. This could be achieved by following the topographical evolution of samples reacting with gaseous species. Identification of the surface defects at the origin of corrosive attacks as well as proposition of reaction mechanisms will be describe in future works.The present work shows first in situ measurements that validate this new and unique experimental “HP-AFM” (High Pressure Atomic Force Microscope). The impact of the atmosphere’s composition as well as the pressure values on the topographical measurements recorded by the AFM system is especially studied.In this way, a calibration standard is used to detect a potential working drift of the AFM system (scanner head displacements, optical detection …) that could lead to eventual distortions of pictures recorded and misinterpretation of observations. This sample has been studied under several experimental conditions and the results have shown an identical behaviour of the AFM used ex situ and in situ under Ar or He up to 1.5 atm as well as a good stability during long recording acquisitions (up to 90 min) necessary for kinetic studies.


2013 ◽  
Vol 1543 ◽  
pp. 159-164 ◽  
Author(s):  
Pierre-Olivier Chapuis ◽  
Emmanuel Rousseau ◽  
Ali Assy ◽  
Séverine Gomès ◽  
Stéphane Lefèvre ◽  
...  

ABSTRACTWe observe the heat flux exchanged by the hot tip of a scanning thermal microscope, which is an instrument based on the atomic force microscope. We first vary the pressure in order to analyze the impact on the hot tip temperature. Then the distance between the tip and a cold sample is varied down to few nanometers, in order to reach the ballistic regime. We observe the cooling of the tip due to the tip-sample heat flux and compare it to the current models in the literature.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244
Author(s):  
Anita Kwaśniewska ◽  
Michał Świetlicki ◽  
Adam Prószyński ◽  
Grzegorz Gładyszewski

Starch films modified with additives are materials increasingly being used in the production of packaging. These types of biopolymers can, to a considerable degree, replace plastic, contributing to the reduction in both production and waste management costs. However, they should be characterised by specific mechanical and surface parameters which determine their application. In the presented work, the PeakForce Quantitative Nanomechanics Mapping (PFQNM) method was applied to analyse a starch-based biopolymer modified with two different kaolin clay contents (5% and 10%). The technique used facilitates the assessment of the correlation of Atomic Force Microscope AFM height parameters with nanomechanical ones which provide the definitions of mutual interactions and allow the possibility to analyse materials in respect of various details. The investigated material was mapped in the Derjaguin–Muller–Toporov (DMT) modulus, adhesion and height domains. The results obtained indicated the impact of additives on the determined parameters. Increases in the DMT modulus and the adhesion force, along with the kaolin content, were observed. The enhancement of starch films with kaolin clay also induced growth in the surface roughness parameters.


Author(s):  
Kathleen M. Marr ◽  
Mary K. Lyon

Photosystem II (PSII) is different from all other reaction centers in that it splits water to evolve oxygen and hydrogen ions. This unique ability to evolve oxygen is partly due to three oxygen evolving polypeptides (OEPs) associated with the PSII complex. Freeze etching on grana derived insideout membranes revealed that the OEPs contribute to the observed tetrameric nature of the PSIl particle; when the OEPs are removed, a distinct dimer emerges. Thus, the surface of the PSII complex changes dramatically upon removal of these polypeptides. The atomic force microscope (AFM) is ideal for examining surface topography. The instrument provides a topographical view of individual PSII complexes, giving relatively high resolution three-dimensional information without image averaging techniques. In addition, the use of a fluid cell allows a biologically active sample to be maintained under fully hydrated and physiologically buffered conditions. The OEPs associated with PSII may be sequentially removed, thereby changing the surface of the complex by one polypeptide at a time.


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document