Synthesis of calcium silicate as paper filler with desirable particle size from desilication solution of silicon-containing waste residues

2020 ◽  
Vol 368 ◽  
pp. 137-148
Author(s):  
Yijin Qiu ◽  
Shaotao Cao ◽  
Fangfang Chen ◽  
Shaowei You ◽  
Yi Zhang
Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3094
Author(s):  
Ju Zhang ◽  
Changwang Yan ◽  
Pucun Bai ◽  
Xiaoxiao Wang ◽  
Shuguang Liu ◽  
...  

Calcium silicate slag (CSS) is waste slag and it contains a large amount of beta-dicalcium silicate. This study is mainly focused on the effect of CSS on the hydration of cementitious pastes. CSS was used to partly replace cement, and composite pastes containing CSS and cement were prepared. The mineral composition and particle size distribution of CSS were characterized. The chemically combined water of the paste sample was measured at a given test age. Based on the value of chemically combined water, the hydration degree and the hydration rate of composite pastes were analyzed. The flexural strength of the samples was established. The pore structure and micromorphology of the sample were also observed. The results indicate the chemically combined water decreased, the hydration degree decreased, the hydration rate declined, and the spherical micromorphology of the calcium silicate hydrate gel was reduced after more cement was replaced by CSS in the composite pastes. Besides, the amount of pores increased, its size was bigger, and air content in the pore was higher. However, flexural strength was lower. CSS has a significant impact on the hydration of cementitious pastes, and it is thus suitable to regulate hydration.


2013 ◽  
Vol 395-396 ◽  
pp. 577-581
Author(s):  
Quan Xiao Liu ◽  
Yan Na Yin ◽  
Wen Cai Xu

The X-ray diffraction of hydrated calcium silicate is analyzed and is applied in papermaking. It shows that hydrated calcium silicate have certain crystalline state. The tensile strength, tearing strength and folding strength of paper decrease in different degree with the increase of dosage of hydrated calcium silicate while the whiteness and the printing color density of paper improve. T tensile strength and folding strength of paper decrease in varying degrees with the increase of dosage of PAM while the tearing strength of paper and the whiteness improve. And the printing color density of paper is the same.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (10) ◽  
pp. 49-57 ◽  
Author(s):  
SHUNXI SONG ◽  
MEIYUN ZHANG ◽  
ZHIRUN YUAN ◽  
JIAN WANG ◽  
JUNMIN SUN ◽  
...  

The development and application of low-cost and high-performance fillers by the paper industry is one of the most interesting aspects of filler technology. A novel calcium silicate, a byproduct, known as fly ashbased calcium silicate (FACS), from the value-added use of fly ash of coal-fired power plants, can be used as paper filler. To simulate the industrial papermaking process, a dynamic sheet former was used to evaluate the effect of FACS on the physical properties and printability of calendered paper. The results were compared with those of commonly used fillers, i.e., ground calcium carbonate (GCC) and precipitated calcium carbonate (PCC). FACS-filled paper delivered a higher bulk than GCC-filled or PCC-filled papers at a given paper roughness. In addition, use of the original FACS exerted less influence on the tensile and tear strength of the filled paper. Printing quality tests indicated that at the same print density, the ink demand of FACS-filled paper was higher than that of GCC-filled or PCC-filled papers, but lower print through was obtained at the same amount of ink transferred to paper. The paper sheets containing the original FACS exhibited better surface strength than PCC-filled sheets. The results support the potential use of FACS as a low-cost filler for fine paper production.


2012 ◽  
Vol 51 (50) ◽  
pp. 16377-16384 ◽  
Author(s):  
Shunxi Song ◽  
Meiyun Zhang ◽  
Zhibin He ◽  
Jack Zhe Li ◽  
Yonghao Ni

2003 ◽  
Vol 22 (1_suppl) ◽  
pp. 37-102 ◽  

This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 μm as possibly carcinogenic to humans, but fibers <5 μm were not classified as to their carcino-genicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin irritation study. Magnesium Aluminum Silicate and Sodium Magnesium Silicate caused minimal eye irritation in a Draize eye irritation test. Bentonite caused severe iritis after injection into the anterior chamber of the eyes of rabbits and when injected intralamellarly, widespread corneal infiltrates and retrocorneal membranes were recorded. In a primary eye irritation study in rabbits, Hectorite was moderately irritating without washing and practically nonirritating to the eye with a washout. Rats tolerated a single dose of Zeolite A without any adverse reaction in the eye. Calcium Silicate had no discernible effect on nidation or on maternal or fetal survival in rabbits. Magnesium Aluminum Silicate had neither a teratogenic nor adverse effects on the mouse fetus. Female rats receiving a 20% Kaolin diet exhibited maternal anemia but no significant reduction in birth weight of the pups was recorded. Type A Zeolite produced no adverse effects on the dam, embryo, or fetus in either rats or rabbits at any dose level. Clinoptilolite had no effect on female rat reproductive performance. These ingredients were not genotoxic in the Ames bacterial test system. In primary hepatocyte cultures, the addition of Attapulgite had no significant unscheduled DNA synthesis. Attapulgite did cause significant increases in unscheduled DNA synthesis in rat pleural mesothelial cells, but no significant increase in sister chromosome exchanges were seen. Zeolite particles (<10 μm) produced statistically significant increase in the percentage of aberrant metaphases in human peripheral blood lymphocytes and cells collected by peritoneal lavage from exposed mice. Topical application of Magnesium Aluminum Silicate to human skin daily for 1 week produced no adverse effects. Occupational exposure to mineral dusts has been studied extensively. Fibrosis and pneumoconiosis have been documented in workers involved in the mining and processing of Aluminum Silicate, Calcium Silicate, Zirconium Silicate, Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the extensive pulmonary damage in humans was the result of direct occupational inhalation of the dusts and noted that lesions seen in animals were affected by particle size, fiber length, and concentration. The Panel considers that most of the formulations are not respirable and of the preparations that are respirable, the concentration of the ingredient is very low. Even so, the Panel considered that any spray containing these solids should be formulated to minimize their inhalation. With this admonition to the cosmetics industry, the CIR Expert Panel concluded that these ingredients are safe as currently used in cosmetic formulations. The Panel did note that the cosmetic ingredient, Talc, is a hydrated magnesium silicate. Because it has a unique crystalline structure that differs from ingredients addressed in this safety assessment, Talc is not included in this report.


2019 ◽  
Vol 296 ◽  
pp. 57-63
Author(s):  
Simona Ravaszová ◽  
Karel Dvořák ◽  
Dominik Gazdič

This article deals with the preparation and laboratory milling of β-dicalcium silicate. Dicalcium silicate is the second most important calcium silicate of Portland clinker. β-C2S is usually dominated in industrially produced clinker. Pure β-C2S can be prepared in several ways. Traditional way is the solid phase synthesis of raw material mixture. The paper deals with the preparation of β-dicalcium silicate, which is based on the modified Wesselsky-Jensen method and with the influence of length and the technology of the milling process in 3 types of laboratory mills on the particle size, distribution and agglomeration of the synthetically prepared β-dicalcium silicate.


2018 ◽  
Vol 788 ◽  
pp. 3-12
Author(s):  
Felipe Marti-Montava ◽  
Ann Opsommer ◽  
David Garcia-Sanoguera

This paper investigates the influence of different types of silica fume on the crystallization process of medium density calcium silicate based products. The products are formed by a new technology that consists of two steps. In the first step, a mixture containing calcium silicate hydrates (C-S-H) is formed by reaction of lime with special silicas at temperatures below 100°C. This mixture is then molded into boards by a filter-pressing technique. In the second step, the boards are treated in hydrothermal conditions enabling the conversion of the C-S-H into important contents of xonotlite (Ca6Si6O17(OH)2); this is the most stable calcium silicate hydrate phase at high temperatures. In order to make C-S-H in pressure less conditions, the use of reactive forms of silica is required. In this work we used silica fume as reactive silica. To understand the influence of the silica fume on the formation of xonotlite, several properties were studied, such as particle size, purity and specific surface area (BET). It was found that the particle size distribution and degree of agglomeration for the silica fume were the most important properties. A proper dispersion technique must be applied in order to break the silica fume agglomerates, forming particles small enough to react with dissolved lime and to form C-S-H phases that are able to be converted into xonotlite under hydrothermal conditions. Finally, it was also found that the formation of xonotlite is favored by the use of high purity silica fume.


2018 ◽  
Vol 33 (3) ◽  
pp. 534-541 ◽  
Author(s):  
Shunxi Song ◽  
Xiaoli Zhen ◽  
Meiyun Zhang ◽  
Lin Li ◽  
Bin Yang ◽  
...  

Abstract Developing engineered filler with special morphology to increase filler content and deliver paper desirable properties has been deserved much concern. In this work, two engineered calcium silicate fillers with different morphology, namely fly ash based calcium silicate (FACS), fibrous calcium silicate (FCS) were adopted to investigate the effect of filler morphology on paper properties, and natural wollastonite was used for comparison. It is found that FACS exhibits a wrinkled, porous surface while FCS reveals spherical agglomerates composed of needle-like particles. Physical tests demonstrated that in comparison with natural wollastonite with discrete shape, the aggregated porous structure of FACS and FCS showed noticeable improvement in bulk and opacity due to their high specific surface area (112 m2/g v.s 29 m2/g). At around 40 % filler content, the bulk of FACS and FCS filled handsheets increased 59.6 % and 43.8 %, respectively. The findings suggested that the engineered porous calcium silicate can be potentially used as paper filler in light weighted paper.


2021 ◽  
Vol 62 (1) ◽  
pp. 63-70
Author(s):  
Fabio De Cesare ◽  
Gabriela De Souza Balbinot ◽  
Vicente Castelo Branco Leitune ◽  
Fabrício Mezzomo Collares

Introduction: This study aims to analyze the influence of particles size of sol-gel derived calcium silicate particles in the setting reaction of bioactive endodontic cements. Materials and Methods: Sol-gel derived calcium silicate particles were synthesized and sieved to separate the particles in different sizes: CS400, CS200, and CS100. A commercial MTA (Control) was used as control. The particle size and the specific surface area were assessed by laser diffraction and nitrogen adsorption. The cements were prepared with water as the liquid for the reaction. The setting time was conducted according to ISO 6876, and the setting kinetics was analyzed by Fourier transformed infrared spectroscopy (FTIR) at different time points between 120s to 72h. Results: The particle size varied from 9.45µm (CS400 ) to 31.01 (Control). The higher specific surface area valuer reached 15.14g/cm2 in the CS400. The smallest particle sizes, the higher specific surface area, and the lowest setting time were found for CS400 (p < 0.05). Control presented the highest setting time (p < 0.05). The FTIR analyses showed the differences in materials structure over time, with faster hydration and crystallization for CS400. The setting kinetics was slower for Control even when compared to a sol-gel derived group with similar particle size. Conclusion: The route of synthesis and the particle size influences the setting reaction of calcium silicate-based cements. The reduction of particle size for sol-gel derived calcium silicates lead to the acceleration of the setting reaction of the produced bioactive endodontic cement.


2014 ◽  
Vol 633 ◽  
pp. 35-38 ◽  
Author(s):  
Jian Chen ◽  
Jing Yang ◽  
Hong Wen Ma

In this paper, wollastonite nanopowder were successfully synthesized by the surfactants modified-calcined method using calcium silicate residue of potassium feldspar after extraction of potassium and alumina. The effects of modifier and calcined temperature on the phase composition, morphology and microstructure were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the phase of samples with different modifier processing is wollastonite-2M, while CTAB as modifier can avoid preferred orientation growth. The obtained wollastonite powder is spherical in morphology and well dispersed with the particle size of approximately 150nm.


Sign in / Sign up

Export Citation Format

Share Document