The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina

2005 ◽  
Vol 24 (1) ◽  
pp. 87-138 ◽  
Author(s):  
John Paul SanGiovanni ◽  
Emily Y. Chew
2021 ◽  
Vol 53 (04) ◽  
pp. 186-188

Newell M et al. N-3 long-chain polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic acid, and the role of supplementation during cancer treatment: A scoping review of current clinical evidence. Cancers (Basel) 2021; 13: 1206. doi: 10.3390/cancers13061206


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lynette P. Shek ◽  
Mary Foong-Fong Chong ◽  
Jia Yi Lim ◽  
Shu-E Soh ◽  
Yap-Seng Chong

Maternal nutrition has critical effects on the developing structures and functions of the fetus. Malnutrition during pregnancy can result in low birth weight and small for gestational age babies, increase risk for infection, and impact the immune system. Long-chain polyunsaturated fatty acids (PUFAs) have been reported to have immunomodulatory effects. Decreased consumption of omega-6 PUFAs, in favor of more anti-inflammatory omega-3 PUFAs in modern diets, has demonstrated the potential protective role of omega-3 PUFAs in allergic and respiratory diseases. In this paper, we examine the role of PUFAs consumption during pregnancy and early childhood and its influence on allergy and respiratory diseases. PUFAs act via several mechanisms to modulate immune function. Omega-3 PUFAs may alter the T helper (Th) cell balance by inhibiting cytokine production which in turn inhibits immunoglobulin E synthesis and Th type 2 cell differentiation. PUFAs may further modify cellular membrane, induce eicosanoid metabolism, and alter gene expression. These studies indicate the benefits of omega-3 PUFAs supplementation. Nevertheless, further investigations are warranted to assess the long-term effects of omega-3 PUFAs in preventing other immune-mediated diseases, as well as its effects on the later immunodefense and health status during early growth and development.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2583
Author(s):  
Manish Dasyani ◽  
Fangyuan Gao ◽  
Qianlan Xu ◽  
Donald Van Fossan ◽  
Ellis Zhang ◽  
...  

Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) play critical roles in membrane stability and cell signaling within the retina. ELOVL2 (Elongation of Very Long Chain Fatty Acids-Like 2), an elongase involved in the synthesis of long chain polyunsaturated fatty acids (LC-PUFAs), has recently been implicated in regulating aging in the mammalian retina. In this work, we characterize the expression and function of elovl2 in the retina development in embryonic zebrafish. Whole mount in situ hybridization shows elovl2 is expressed in the Muller glia in embryonic and adult zebrafish. Lipidomics analysis of elovl2 crispants whole embryos at day 2 and eyes at day 7 demonstrated significant changes in lipids composition, especially on the level of lipids containing docosahexaenoic acid (DHA). Histological analysis of zebrafish lacking elovl2 revealed increased retinal thickness compared to controls at day 7 without gross disruptions of the retinal architecture. Finally, elovl2 crispants showed differences in the visual motor reflex light off (VMR-OFF) at day 7 compared to controls. In sum, inactivation of elovl2 in zebrafish embryos caused changes in lipid composition and in visual behavior, further confirming the important role of LC-PUFAs in healthy vision.


2016 ◽  
Vol 79 (5) ◽  
pp. 754-758 ◽  
Author(s):  
Emma M. Tillman ◽  
Peihong Guan ◽  
Timothy J. Howze ◽  
Richard A. Helms ◽  
Dennis D. Black

2012 ◽  
Vol 52 (9) ◽  
pp. 795-803 ◽  
Author(s):  
Giovanni M. Turchini ◽  
Peter D. Nichols ◽  
Colin Barrow ◽  
Andrew J. Sinclair

2013 ◽  
Vol 29 (6) ◽  
pp. 431-445 ◽  
Author(s):  
Michael R. Flock ◽  
Connie J. Rogers ◽  
K. Sandeep Prabhu ◽  
Penny M. Kris-Etherton

2021 ◽  
Vol 2 (2) ◽  
pp. 12
Author(s):  
Samina Akbar ◽  
Muhammad Zeeshan Bhatti ◽  
Rida Fatima Saeed ◽  
Asma Saleem Qazi

Over the last decades, the polyunsaturated fatty acids (PUFAs) have been largely explored not only for their nutritional value but also for the numerous biological functions and therapeutic effects. The serum and erythrocyte levels of PUFAs depend on the genetic control of metabolism as well as the dietary intake and are considered to reflect the health and disease status of an individual. Two families of PUFAs, omega-3 (n-3) and omega-6 (n-6), have gained much attention because of their involvement in the production of bioactive lipid mediators and therefore, a balanced omega-6/omega-3 ratio is crucial in maintaining the overall health of an individual. Omega-3 PUFAs, notably eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have been shown to exert beneficial effects, possibly due to their lipid-lowering, anti-inflammatory, anti-hypertensive and cardioprotective effects, whereas omega-6 fatty acids such as arachidonic acid (ARA, 20:4n-6) exhibit the opposite properties. Even though, numerous epidemiological studies and clinical interventions have clearly established the effectiveness of omega-3 PUFAs in various pathological conditions including dyslipidemia, obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases, some controversies do exist about the beneficial effects of omega-3 PUFAs and need to be clarified. Larger clinical trials with extended follow-up periods are required along with a careful dose selection, in order to confirm the clinical significance and efficacy of omega-3 PUFAs as therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document