The impact of porcine reproductive and respiratory syndrome virus (PRRSV) genotypes, established on the basis of ORF-5 nucleotide sequences, on three production parameters in Ontario sow farms

2021 ◽  
Vol 189 ◽  
pp. 105312
Author(s):  
Dylan John Melmer ◽  
Terri L. O’Sullivan ◽  
Amy Greer ◽  
Lori Moser ◽  
Davor Ojkic ◽  
...  
Author(s):  
V. P. Lysenko ◽  
I. S. Chernova

Annotation Purpose. Improving the efficiency of entomophages production by developing innovative approaches for it management. Methods. System approach, intelligent information technologies. Results. Innovative approaches for it management of entomophages production have been developed, which consist of: determining and ranking the factors that have the greatest impact on the quality of entomological products, and factors that lead to substandard products; the creation of structural and parametric complexes for assessing product quality; real-time assessment of the intensity of entomocultures development processes; automation of management abiotic parameters stepwise development of insects (temperature and relative humidity of the box for growing of insects) in real time; determining the quality of entomological products in conditions of incomplete information, taking into account the impact of a combination of abiotic and biotic production parameters; calculation of optimal values of production parameters in conditions of uncertainty; systematization of knowledge about the interaction of heterogeneous parameters in the production of entomophages. Conclusions. The proposed innovative approaches to manage the production of entomophages can increase its efficiency by forming optimal management strategies, using the technological experience of specialists and modern intelligent information technologies in particular, SCADA-systems, fuzzy logic theory and cognitive analysis. Keywords: innovative approaches, production of entomophages, intelligent information technologies.


2016 ◽  
Vol 10 (8) ◽  
pp. 230
Author(s):  
Pouya Ghadimi ◽  
Seyed Smaeil Mousavi ◽  
Wen Li ◽  
Sami Kara ◽  
Bernard Kornfeld

Integrated management of manufacturing plant’s production and on-site energy supply systems has shown potential economic, environmental and resource efficiency advantages for the industry. However, existing approaches are solely based on pure mathematical models with a high degree of abstraction with limited applicability, which becomes impractical for industrial applications. In this paper a simulation methodology for production parameters selection and on-site energy supply management is presented. In this case, state-based models and operational strategies of manufacturing processes and on-site energy supply options are integrated to represent interdependency between production processes, technical building services and on-site energy supply system. As a result, the proposed methodology covers manufacturing system complexity without compromising the required accuracy. This is applied to a batch based manufacturing plant and the impact of particular production parameters on energy demand profile is evaluated. The results indicate the impact of production parameters on energy supply system. In addition, the proposed approach enables manufacturers to evaluate the implications of potential production approaches in order to select appropriate operational strategies for on-site energy supply systems.


2019 ◽  
Vol 1 (2) ◽  
pp. 291-302
Author(s):  
Benjamin Smith ◽  
Steven Hoff ◽  
Jay Harmon ◽  
Daniel Andersen ◽  
Jeffrey Zimmerman ◽  
...  

Fresh air intake filtration is used on commercial swine breeding-gestation-farrowing farms to reduce the frequency of airborne infectious agents. For swine producers, porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus and Mycoplasma hyopneumoniae are considered the most economically challenging airborne pathogens. Reduced frequency of disease outbreaks has been attributed to retrofitting existing systems with filtration. Economic analysis of operating costs includes energy use, maintenance and replacement of filters. Filter replacement, the largest operational cost, is dependent on filter lifespan. However, limited data is available on filter lifespan and the rate of airflow reduction during the high dust-loading periods typically encountered for filtered swine building ventilation systems. Therefore, the objectives of this study were (1) estimate the average primary filter airflow reduction per day, (2) identify the impact of factors related to site layout, filter characteristics and weather on airflow reduction rates of filters in positive-pressure ventilated buildings and (3) determine methods for reducing average primary filter airflow reduction rate per day during row-crop harvest season. Both filter brand and the installed orientation of the filter significantly (p = 0.0314, p = 0.0419, respectively) impacted airflow reduction rates. All site layout factors were significant (driveway side, p = 0.001; dormer orientation, p = 0.0001; and dormer configuration, p = 0.0001). The materials tested significantly reduced the airflow reduction rate during row-crop harvest. The information obtained in this study will aid producers when planning for filtration, highlight details relevant to the purchase and installation of filters, identify factors that affect filter lifespan and identify methods for improving filter lifespan.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3604
Author(s):  
Yania Paz-Sánchez ◽  
Pedro Herráez ◽  
Óscar Quesada-Canales ◽  
Carlos G. Poveda ◽  
Josué Díaz-Delgado ◽  
...  

Swine respiratory disease is associated with productive losses. We evaluated the prevalence of lung lesions with an emphasis on Mycoplasma hyopneumoniae (Mh), porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), as well as the impact on productive parameters in 108 finishing pigs at slaughter. Pathologic, immunohistochemical (IHC) and serologic analyses were performed. Pneumonic processes were observed in 73.1% of the animals. They mainly consisted of cranioventral bronchopneumonia (CBP) (46.3%) and pleuritis (17.6%). Microscopically, bronchointerstitial pneumonia (67.4%) was common and was occasionally combined (27.9%) with interstitial pneumonia (IP). Mh and PCV2-antigens were detected in bronchointerstitial pneumonia (70.7%) and IP cases (33.3%). There were low titers against Mh (18%) and high titers against PRRSV (100%) and PCV2 (65%). Animals with CBP remained at the farm longer; those with >10% of lung parenchyma involvement were sent later (208.8 days old) and had a lower average carcass weight (74.1 kg) and a lower daily weight gain (500.8 gr/day) compared with animals without lesions (567.2 gr/day, 77.7 kg, 200.8 days old). We suggest that animals that do not reach the weight at slaughter should be sent to slaughter regardless to avoid further negative impacts of respiratory disease in productive parameters.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 62-63
Author(s):  
Eric R Burrough ◽  
Nicholas K Gabler

Abstract Poor starting nursery pigs are a common source of frustration for pork producers due to suboptimal lean tissue production and failure to thrive. This is generally a multifactorial issue with potential nutritional, infectious and management contributors. Commonly encountered respiratory and enteric pathogens include porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), porcine enteric coronaviruses (TGEV/PEDV/PDCV), and group A, B, and C rotaviruses, as well as Salmonella typhimurium, enterotoxigenic Escherichia coli, Streptococcus suis, and Haemophilus parasuis. Infection with one or more of these agents can ultimately antagonize pig health and performance. However, while these specific pathogens may be causing an observed disease symptom, pigs may have been predisposed to infection due to various management, nutritional, and environmental risk factors. As many of these potential pathogens are endemic in production systems, it is important to remember that simply detecting a potential pathogen within a population is often not sufficient to assign cause for poor growth and production. To help fully interpret the impact of a detected agent, diagnostic efforts should focus on providing proof that the agent is actually causing disease. Molecular detection methods, such as PCR, are increasingly available for common pathogens and have high diagnostic sensitivity but lower diagnostic specificity. This paper will discuss the clinical signs and gross and microscopic lesions associated with common nursery pig pathogens, as well as proper sampling and diagnostic testing necessary to detect and confirm disease following infection with these agents.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mingqiang Hao ◽  
Songlin Liao ◽  
Guangming Yu ◽  
Xinhui Lei ◽  
Yong Tang

In this paper, the sensitivity factors of CO2 huff-n-puff for multifractured horizontal wells (MFHWs) in tight oil reservoirs were investigated through an experimental test and numerical simulation. The pressure-volume-temperature (PVT) experiment and the slim tube experiment are used to understand the interaction mechanism between CO2 and crude oil, and the minimum miscibility pressure (MMP) of the CO2-crude oil system is 17 MPa. The single-well model was firstly established to analyze the sensitivity factors on production performance of MFHWs by using CO2 huff-n-puff. The controlling factors of CO2 huff-n-puff for MFHWs in tight oil reservoirs were divided into three categories (i.e., reservoir parameters, well parameters, and injection-production parameters), and the impact of individual parameter on well performance was discussed in detail. The range of reservoir parameters suitable for CO2 huff-n-puff of MFHWs is obtained. The reservoir permeability is from 0.1 mD to 1 mD, the reservoir thickness changes from 10 m to 30 m, and the reservoir porosity is from 7% to 12%. Based on the reservoir parameters of the target reservoir, the reasonable well and fracture parameters are obtained. The sensitivity intensity was followed by the horizontal well length, fracture conductivity, fracture spacing, and fracture half-length. CO2 injection-production parameters are further optimized, and the sensitivity intensity was followed by the single-cycle cumulative CO2 injection rate, the soaking time, the injection rates, and the production rates. It provides a reference for parameter optimization of CO2 huff-n-puff for MFHWs in tight oil reservoirs.


2017 ◽  
Vol 1 (4) ◽  
pp. 480-488 ◽  
Author(s):  
W. Schweer ◽  
K. Schwartz ◽  
J. F. Patience ◽  
L. Karriker ◽  
C. Sparks ◽  
...  

Abstract Porcine reproductive and respiratory syndrome (PRRS) virus is a major swine virus that causes reproductive impairment in sows, as well as respiratory disease, reduction in growth rates, and mortalities in all ages of pigs. The objective of this study was to quantify the impact PRRS has on grower-finisher pig feed efficiency and tissue accretion rates. Thirty PRRS naïve, littermate pairs of maternal line Choice Genetics gilts (33.6 ± 0.58 kg BW) were selected and pairs split across 2 barns consisting of 5 pens (n = 6 pigs/pen per barn). Pigs in both barns were fed corn-soybean-DDGS diets ad libitum. All pigs in one barn were inoculated (CHAL) via an i.m. injection of a live PRRS strain isolated from the region (0 d post inoculation, dpi), while pigs in the other barn were given a saline control injection (CONT). Pig performance (ADG, ADFI, G:F) was assessed from 35 kg BW until each group reached market BW (128 kg). Additionally, longitudinal apparent total tract digestibility (ATTD) and body composition was assessed using Dual-energy X-ray absorptiometry (DXA) post inoculation (dpi) to estimate lean, protein, fat and bone accretion rates. Serological data from CHAL pigs showed that PRRS titers peaked 7 dpi and these pigs seroconverted by 35 dpi. According to both genomic and protein PRRS titers, CONT pigs were naïve to CHAL throughout the study. The PRRS infection reduced (P < 0.001) ATTD of dry matter, energy and nitrogen by 3 to 5% at 21 dpi and the reduction in ATTD persisted after 65 dpi. Compared to the CONT, CHAL pigs had decreased ADG (0.89 vs. 0.80 kg/d, P < 0.001), ADFI (2.05 vs. 1.93 kg/d, P < 0.001), and G:F (0.44 vs. 0.41 kg/d, P < 0.001) over the entire test period. The CHAL pigs also had attenuated DXA predicted whole body accretion of lean (547 vs. 633 g/d, P = 0.001), protein (109 vs. 126 g/d, P = 0.001) and fat (169 vs. 205 g/d, P = 0.001) compared to their CONT counterparts from dpi 0 to 80. Based on carcass data at slaughter (and consistent with the DXA data), CHAL pigs had leaner carcasses and reduced yields. These data clearly demonstrate that PRRS infection reduces digestibility, feed efficiency and protein accretion rates in grower-finisher pigs.


Author(s):  
Luca Lo Verso ◽  
Kristina Dumont ◽  
Martin Lessard ◽  
Karoline Lauzon ◽  
Chantale Provost ◽  
...  

Abstract This study aimed to evaluate the impact of grading levels of deoxynivalenol (DON) in the diet of weaned pigs, as well as the effects of a supplementation with antioxidants (AOX), hydrated sodium calcium aluminosilicates (HSCAS) and their combination on the growth, antioxidant status, immune and vaccine response against the porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 2 (PCV2). At weaning, 336 piglets were allocated to six dietary treatments according to a randomized complete block design. Treatments were as follows: basal diet (CTRL); basal diet containing DON at 1.2 mg/kg (DON1.2); basal diet containing DON at 2.4 mg/kg (DON2.4); DON2.4 diet + a mix of AOX which included vitamins A and E at 20,000 IU and 200 IU/kg feed respectively, selenized yeast at 0.3 mg/kg and a grape seed extracts at 100 mg/kg feed (DON2.4+AOX); DON2.4 diet + modified HSCAS at 1 g/kg (DON2.4+HSCAS); DON2.4+AOX+HSCAS. Pigs were vaccinated against PRRSV and PCV2 at 7 d; at 0, 14 and 35 d growth performance were recorded, and blood samples were collected in order to evaluate the oxidative status, inflammatory blood markers, lymphocyte blastogenic response and vaccine antibody response. Increasing intake of DON resulted in a quadratic effect at 35 d in the lymphocyte proliferative response to Concanavalin A and PCV2 as well as in the anti-PRRSV antibody response, whereas the catalase activity decreased in DON2.4 pigs compared to the CTRL and DON1.2 groups (P ≤ 0.05). Compared to the DON2.4 diet, the AOX supplementation slightly reduced G:F ratio (P = 0.026) and increased the ferric reducing ability of plasma as well as α-tocopherol concentration (P < 0.05), whereas the association AOX+HSCAS increased the anti-PRRSV IgG (P < 0.05). Furthermore, the HSCAS supplement reduced haptoglobin levels in serum at 14 d compared to the DON2.4 group; however, its concentration decreased in all the experimental treatments from 14 d to 35 d and particularly in the DON2.4+AOX pigs, whereas a different trend was evidenced in the DON2.4+HSCAS group, where over the same period haptoglobin concentration increased (P < 0.05). Overall, our results show that the addition of AOX and HSCAS in the diet may alleviate the negative effects due to DON contamination on the antioxidant status and immune response of vaccinated weanling pigs.


2000 ◽  
Vol 81 (10) ◽  
pp. 2497-2502 ◽  
Author(s):  
Stanislav Indik ◽  
Lubomír Valíček ◽  
Dieter Klein ◽  
Jana Klánová

The major envelope glycoprotein genes (ORF5) of seven Czech isolates of porcine reproductive and respiratory syndrome virus (PRRSV) were amplified and their nucleotide sequences were determined. ORF5 displayed nucleotide and amino acid identities of 87·5–100% and 87·6–100%, respectively, among the isolates. In a phylogenetic tree, all European isolates were grouped in a genotype distinct from that of reference American strains (VR-2332, IAF-Klop). Among the European isolates, two different clades were identified. Two Czech isolates (V-501 and V-503) and Italian strain PRRSV 2156 fell into one clade. The remaining European strains comprised the second clade. Surprisingly, two separately clustered strains (V-501 and V-516) were isolated from the same herd. Additionally, the possible effect of in vitro cultivation on the nucleotide sequence was analysed. Nine point mutations in the ORF5 region resulted from 152 in vitro passages of the V-502 isolate in MARC-145 cells.


Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2475-2482 ◽  
Author(s):  
B. S. Congdon ◽  
B. A. Coutts ◽  
M. Renton ◽  
M. Banovic ◽  
R. A. C. Jones

From 2013 to 2015, incidences of Pea seed-borne mosaic virus (PSbMV) infection were determined in semi-leafless field pea (Pisum sativum) crops and trial plots growing in the Mediterranean-type environment of southwest Australia. PSbMV was found at incidences of 2 to 51% in 9 of 13 crops, 1 to 100% in 20 of 24 cultivar plots, and 1 to 57% in 14 of 21 breeding line plots. Crops and plots of ‘PBA Gunyah’, ‘Kaspa’, and ‘PBA Twilight’ were frequently PSbMV infected but none of PSbMV resistance gene sbm1-carrying ‘PBA Wharton’ plants were infected. In 2015, 14 new PSbMV isolates obtained from these various sources were sequenced and their partial coat protein (CP) nucleotide sequences analyzed. Sequence identities and phylogenetic comparison with 39 other PSbMV partial CP nucleotide sequences from GenBank demonstrated that at least three PSbMV introductions have occurred to the region, one of which was previously unknown. When plants of ‘Greenfeast’ and PBA Gunyah pea (which both carry resistance gene sbm2) and PBA Wharton and ‘Yarrum’ (which carry sbm1) were inoculated with PSbMV pathotype P-2 isolate W1, resistance was overcome in a small proportion of plants of each cultivar, showing that resistance-breaking variants were likely to be present. An improved management effort by pea breeders, advisors, and growers is required to diminish infection of seed stocks, avoid sbm gene resistance being overcome in the field, and mitigate the impact of PSbMV on seed yield and quality. A similar management effort is likely to be needed in field pea production elsewhere in the world.


Sign in / Sign up

Export Citation Format

Share Document