scholarly journals Dry-ED milling of micro-scale contours with high-speed rotating tungsten tube electrodes

Procedia CIRP ◽  
2020 ◽  
Vol 95 ◽  
pp. 533-538
Author(s):  
E. Uhlmann ◽  
I. Perfilov ◽  
S. Yabroudi ◽  
R. Mevert ◽  
M. Polte
Keyword(s):  
2015 ◽  
Vol 799-800 ◽  
pp. 402-406 ◽  
Author(s):  
S. Hassan ◽  
Mohd Sallehuddin Yusof ◽  
M.I. Maksud ◽  
M.N. Nodin ◽  
Noor Azlina Rejab

Roll to roll process is one of the famous printing techniques that are possible to create graphic and electronic device on variable substrate by using conductive ink. Graphene is an example of material that can be used as printing ink which usually used in producing micro-scale electronic devices. Here, it is proposed that extending roll to roll printing technique into the multiple micro-scale printing fine solid line onto substrate by using graphene as a printing ink. Flexography is a high speed roll to roll printing technique commonly used in paper printing industry. And this study elaborates the feasibility of graphene as a printing ink use in combination of flexography and micro-contact or micro-flexo printing for micro fine solid line. This paper will illustrates the review of graphene in producing multiple micro-solid lines printing capability for the application of printing electronic, graphic and bio-medical.


2006 ◽  
Author(s):  
Lichuan Gui ◽  
Bernard J. Jansen ◽  
John M. Seiner

A new particle image velocimetry system is applied to measure turbulent air jet flows from a micro-scale nozzle. The applied MPIV system includes a long-distance microscope that enables not only a long working distance, but also a forward-scattering optical setup. By using a high repeating rate Nd:YAG laser and an advanced digital camera, particle image recordings can be captured at 60 fps, i.e. 30 PIV recording pairs per second, with an interframing time of 180 ns, so that a high-speed flow measurement is enabled in micro scale. Measurements were conducted in the central plane of an air jet from a nozzle of 500 μm in diameter at flow velocity up to 110 m/s. Mean velocity and Reynolds stress distributions were determined with statistical analyses of thousands of instantaneous velocity maps.


Author(s):  
Renqiang Xiong ◽  
Jacob N. Chung

In this paper we used high speed recording to characterize segmented micro-scale air bubble generation in a T-junction and bubble transport in a serpentine micro-channel fabricated in a standard silicon wafer.


2017 ◽  
Vol 17 (09) ◽  
pp. 1750110 ◽  
Author(s):  
K. B. Mustapha ◽  
Z. W. Zhong ◽  
S. B. A. Kashem

Some high-speed rotating micro-machines and micro-vibration devices rely on the use of whirling micro-shafts subject to the effect of gravity and magnetic fields. At present, the consequences of the interaction between the elastic deformation of such shafts and the magnetic/gravitational field effects remain unresolved. Focusing on micro-scale whirling shafts with very high torsional rigidity, this study presents a theoretical treatment grounded in the theory of micro-continuum elasticity to examine the ramification of this interaction. The differential transformation method (DTM) is used to obtain extensive numerical results for qualitative assessments of the magnetic-gravitational effects interaction on standing, hanging and horizontally positioned spinning micro-scale shafts. The influence of bearing-support flexibility on the response of the whirling micro-shaft is also considered with rotational and translational springs. The gravitational sag reduces the stability of whirling standing micro-shafts and increases that of the hanging micro-shafts. Further, for all the micro-shafts configurations investigated, the magnetic field is observed to stiffen the response of the shaft and favorably shifts the critical points of vibration of the whirling shafts forward.


2010 ◽  
Vol 50 (5) ◽  
pp. 491-494 ◽  
Author(s):  
Huixia Liu ◽  
Zongbao Shen ◽  
Xiao Wang ◽  
Hejun Wang ◽  
Maoke Tao

Author(s):  
K. Ibrahem ◽  
M. F. Abd Rabbo ◽  
T. Gambaryan-Roisman ◽  
P. Stephan

An experimental study is conducted to investigate the micro-scale heat transfer at an evaporating moving 3-phase contact line. The moving evaporating meniscus is formed by pushing or sucking a liquid column of HFE7100 in a vertical channel of 600 μm width using a syringe pump. The gas atmosphere is pure HFE7100 vapor. This channel is built using two parallel flat plates. A 10 μm thick stainless steel heating foil forms a part of one of the flat plates. Two-dimensional micro-scale temperature field at the back side of the heating foil is observed with a high speed infrared camera with a spatial resolution of 14.8 μm × 14.8 μm and an in-situ calibration procedure is used at each pixel element. A high speed CMOS camera is used to capture the shape of the moving meniscus, the images are post-processed to track the free surface of the meniscus. Local heat fluxes from the heater to the evaporating meniscus are calculated from the measured transient wall temperature distributions using an energy balance for each pixel element. In the vicinity of the 3-phase contact line the heat flux distribution shows a local maximum due to high evaporation rates at this small region. The local maximum heat flux at the 3-phase contact line area is found to be dependent on the input heat flux, the velocity and the direction of the meniscus movement. The results give detailed insight into the specific dynamic micro-scale heat and fluid transport process.


2019 ◽  
Author(s):  
M. Armstrong ◽  
B-G. Han ◽  
S. Gomez ◽  
J. Turner ◽  
D. A. Fletcher ◽  
...  

ABSTRACTBlotting has been the standard technique for preparing aqueous samples for single-particle electron cryo-microscopy (cryo-EM) for over three decades. This technique removes excess solution from a TEM grid by pressing absorbent filter paper against the specimen prior to vitrification. However, this standard technique produces vitreous ice with inconsistent thickness from specimen to specimen and from region to region within the same specimen, the reasons for which are not understood. Here, high-speed interference-contrast microscopy is used to demonstrate that the irregular pattern of fibers in the filter paper imposes tortuous, highly variable boundaries during removal of excess liquid from a flat, hydrophilic surface. As a result, aqueous films of nonuniform thickness are formed while the filter paper is pressed against the substrate. This pattern of nonuniform liquid thickness changes again after the filter paper is pulled away, but the thickness still does not become completely uniform. We suggest that similar topological features of the liquid film are produced during the standard technique used to blot EM grids and that these manifest in nonuniform ice after vitrification. These observations suggest that alternative thinning techniques, which do not rely on direct contact between the filter paper and the grid, may result in more repeatable and uniform sample thicknesses.STATEMENT OF SIGNIFICANCEMultiple imaging techniques are used to observe dynamic, micro-scale events as excess water is removed from a substrate by blotting with filter paper. As a result, new insight is gained about why the thickness values of remaining sample material are so variable across a single EM grid, as well as from one grid to the next. In addition, quantitative estimates are made of the shear forces to which macromolecular complexes can be exposed during blotting. The fact that sample thicknesses and flow rates are seen to be inherently under poor control during blotting suggests that other methods of removing excess water may be better suited for consistently achieving large sample areas that are suitable for use in electron cryo-microscopy.


2020 ◽  
Vol 846 ◽  
pp. 133-138
Author(s):  
Gandjar Kiswanto ◽  
Adrian Mandala ◽  
Maulana Azmi ◽  
Tae Jo Ko

Micro-milling offers high flexibility by producing complex 3D micro-scale products. Weight reduction are one of the optimizations of the product that can make it stronger and more efficient nowadays. Titanium are the most commonly used for micro-scale products especially in biomedical industries because of the biocompatibility properties. Titanium alloys offers high strength with low density and high corrosion resistance that is suitable for weight reduction. This study aims to investigate the influence of high speed cutting parameters to the surface roughness in micromilling of titanium alloy Ti-6Al-4V as high speed cutting offers more productivity since producing more cutting length in the same time. experiments are carried out by micromilling process with variations in high speed cutting parameters of spindle speed and feed rate with a constant depth of cut using a carbide cutting tool of with a diameter of 1 mm. The machining results in the form of a 4 mm slot with a depth as the same as depth of cut, which then measures its surface roughness. It was found that higher feed rate that is followed by higher spindle speed will produce better surface roughness.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (19) ◽  
pp. 3873-3880 ◽  
Author(s):  
Kee Scholten ◽  
Xudong Fan ◽  
Edward T. Zellers

A microfabricated optofluidic ring resonator (μOFRR) sensor is introduced and its utility as a detector for micro-scale gas chromatography is assessed.


Sign in / Sign up

Export Citation Format

Share Document