An analysis of bio-digester substrate heating methods: A review

2021 ◽  
Vol 137 ◽  
pp. 110432
Author(s):  
Francis Makamure ◽  
Patrick Mukumba ◽  
Golden Makaka
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 724
Author(s):  
Tong Li ◽  
Masaya Ichimura

Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.


1999 ◽  
Vol 73 (2) ◽  
pp. 131-139 ◽  
Author(s):  
S. de la Plaza ◽  
R.M. Benavente ◽  
J.L. Garcı́a ◽  
L.M. Navas ◽  
L. Luna ◽  
...  

Author(s):  
Shizhou Xiao ◽  
Rui Guo ◽  
Guanghua Cheng ◽  
Yalei Wu ◽  
Wenhao Huang ◽  
...  

In this paper, a novel PZT film patterning method by femtosecond laser is proposed. The method is different from traditional dry-etching and wet-etching technology. Femtosecond laser microfabrication technology has several advantages such as high resolution, no mask direct-writing and seldom-heating, etc. A two-layer (PZT thin film and substrate) heating and ablating threshold model is built and the relationship of PZT/Si two-layer system micro ablation morphology depending on laser pulse energy is constructed. From the model and experiment data, we obtain the suitable energy region to pattern PZT film freely without damage Si substrate. A 3μm resolution of PZT pattern is achieved in our experiment. In order to verify the fabrication available of this technology, several micro functional devices are successfully patterned by optimized femtosecond pulsed laser energy and their function are detected. The results prove that the PZT patterning quality is good.


1996 ◽  
Vol 35 (Part 2, No. 1A) ◽  
pp. L4-L7 ◽  
Author(s):  
Shingo Sato ◽  
Akihiro Funyu ◽  
Hideaki Ikoma

2021 ◽  
Vol 56 ◽  
pp. 97-107
Author(s):  
M. S. Zayats ◽  

A low-temperature (substrate heating temperature up to 400 °C) ion-plasma technology for the formation of nanostructured AlN and BN films by the method of high-frequency reactive magnetron sputtering of the corresponding targets has been developed (the modernized installation "Cathode-1M"), which has in its technological cycle the means of physical and chemical modification, which allow to purposefully control the phase composition, surface morphology, size and texture of nanocrystalline films. The possibility of using the method of high-frequency magnetron sputtering for deposition of transparent hexagonal BN films in the nanoscale state on quartz and silicon substrates is shown. Atomic force microscopy (AFM) has shown that AlN films can have an amorphous or polycrystalline surface with grain sizes of approximately 20-100 nm, with the height of the nanoparticles varying from 3 to 10 nm and the degree of surface roughness from 1 to 10 nm. It was found that the dielectric penetration of polycrystalline AlN films decreases from 10 to 3.5 at increased frequencies from 25 Hz to 1 MHz, and the peak tangent of the dielectric loss angle reaches 0.2 at 10 kHz. Such features indicate the existence of spontaneous polarization of dipoles in the obtained AlN films. Interest in dielectric properties in AlN / Si structures it is also due to the fact that there are point defects, such as nitrogen vacancies and silicon atoms, which diffuse from the silicon substrate during synthesis and play an important role in the dielectric properties of AlN during the formation of dipoles. The technology makes it possible, in a single technological cycle, to produce multilayer structures modified for specific functional tasks with specified characteristics necessary for the manufacture of modern electronics, optoelectronics and sensorics devices. It should also be noted that the technology of magnetron sputtering (installation "Cathode-1M") is highly productive, energetically efficient and environmentally friendly in comparison with other known technologies for creating semiconductor structures and allows them to be obtained with minimal changes in the technological cycle.


2007 ◽  
Vol 101 (3) ◽  
pp. 374-380 ◽  
Author(s):  
Melkon Tatlier ◽  
Mesut Demir ◽  
Begüm Tokay ◽  
Ayşe Erdem-Şenatalar ◽  
Lioubov Kiwi-Minsker

Author(s):  
Tilman Beierlein ◽  
S. Strite ◽  
A. Dommann ◽  
D. J. Smith

We have investigated the properties of InGaN grown at low temperature on glass substrates by a plasma enhanced MBE process. The goal of this study was to evaluate the potential of InGaN as an oxide-free, transparent conductor material which could be deposited at or slightly above room temperature with minimal interaction or damage to the underlying material. InxGa1−xN films deposited on glass, even without substrate heating, are highly crystalline, but the crystallinity as measured by x-ray degrades at x < 0.5. The microstructure observed by TEM of InGaN films deposited on unheated substrates is highly columnar, with typical column widths of ~10 nm. The optical absorption spectra of InGaN/glass have a distinct absorption edge at the bandgap, but also high background absorption in the bandgap. InxGa1−xN grown on glass (x > 0.5) is conductive due to its high electron concentration. InN electron Hall mobilities > 20 cm2/Vs when grown at 400°C, and ~ 7 cm2/Vs on unheated substrates were obtained. The addition of GaN degraded the electrical properties of the films to a greater extent than it improved the transparency. As a result, the best transparent conductor films were pure InN which, when deposited at 400°C, were half as transparent in the green as an indium tin oxide film having the same sheet resistance.


Sign in / Sign up

Export Citation Format

Share Document