Application of NIRs coupled with PLS and ANN modelling to predict average droplet size in oil-in-water emulsions prepared with different microfluidic devices

Author(s):  
Ana Jurinjak Tušek ◽  
Tamara Jurina ◽  
Ivana Čulo ◽  
Davor Valinger ◽  
Jasenka Gajdoš Kljusurić ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 358
Author(s):  
Phui Yee Tan ◽  
Beng Ti Tey ◽  
Eng Seng Chan ◽  
Oi Ming Lai ◽  
Hon Weng Chang ◽  
...  

Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59–99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1–9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.


2016 ◽  
Vol 52 (46) ◽  
pp. 7344-7347 ◽  
Author(s):  
M. J. Hollamby ◽  
A. E. Danks ◽  
Z. Schnepp ◽  
S. E. Rogers ◽  
S. R. Hart ◽  
...  

Using a liquid pyrene derivative as the oil, stable oil-in-water microemuslions are prepared, with tunable fluorescence emission via droplet size.


2016 ◽  
Vol 17 (3) ◽  
pp. 91-94 ◽  
Author(s):  
Yayoi MIYAGAWA ◽  
Kohshi KIKUCHI ◽  
Hirokazu SHIGA ◽  
Shuji ADACHI

2020 ◽  
Vol 562 ◽  
pp. 352-362 ◽  
Author(s):  
Marlene Costa ◽  
Josefa Freiría-Gándara ◽  
Sonia Losada-Barreiro ◽  
Fátima Paiva-Martins ◽  
Carlos Bravo-Díaz

2017 ◽  
Vol 243 (8) ◽  
pp. 1415-1427 ◽  
Author(s):  
Martin E. Erdmann ◽  
Ralf Lautenschlaeger ◽  
Heinar Schmidt ◽  
Benjamin Zeeb ◽  
Monika Gibis ◽  
...  

Holzforschung ◽  
2018 ◽  
Vol 72 (6) ◽  
pp. 489-497 ◽  
Author(s):  
Jun Jiang ◽  
Jinzhen Cao ◽  
Wang Wang ◽  
Haiying Shen

AbstractPickering emulsions (emulsions stabilized by solid-state additives) are attractive as they have strong similarities with traditional surfactant-based emulsions. In this study, an oil-in-water (O/W) paraffin Pickering emulsion system with satisfying stability and small droplet size distribution was developed by hydrophilic silica particles and traditional surfactants as mixed emulsifiers. The droplet morphology and size distribution were observed by optical microscopy and a laser particle analyzer. The emulsion stability was improved and the droplet size was reduced after addition of a suitable amount of silica particles. The silica concentration of 1% showed the optimal effect among all the levels observed (0.1, 0.5, 1 and 2%). Wood was impregnated with the prepared emulsion, and the chemical and morphological properties of the product were investigated by Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersed X-ray analysis (SEM-EDXA). Moreover, the hydrophobicity, thermal properties, surface hardness, axial compression strength (CS) and dynamic mechanical properties were tested. The silica was evenly distributed in the wood cell wall and thus there was a synergistic positive effect from the paraffin and silica in the cell wall leading to better hydrophobicity, improved surface hardness and mechanical properties including the thermal stability.


Soft Matter ◽  
2019 ◽  
Vol 15 (47) ◽  
pp. 9762-9775 ◽  
Author(s):  
Aakash Patel ◽  
Athira Mohanan ◽  
Supratim Ghosh

Sodium caseinate (SC)-stabilized 40% oil-in-water nanoemulsions (NEs) could be transformed into elastic gels below a critical droplet size due to increase in ϕeff by a thicker steric barrier of SC, while whey protein (WPI)-stabilized NEs remained liquid due to thinner steric barrier of WPI.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 981 ◽  
Author(s):  
Małgorzata Miastkowska ◽  
Elwira Lasoń ◽  
Elżbieta Sikora ◽  
Katarzyna Wolińska-Kennard

The application of nanoemulsions as a novel delivery system for lipophilic materials, such as essential oils, flavors, and fragrances is one of the growing technologies used in cosmetic, pharmaceutical, and food industries. Their characteristic properties, like small droplet size with high interfacial area, transparent or semi-transparent appearance, low viscosity, and high kinetic stability, make them a perfect vehicle for fragrances, in the perfume industry. They could be a great alternative to water-based perfumes, without alcohol, and solve problems related to the oxidation and low bioavailability of fragrances with other non-alcoholic vehicles of perfumes like pomades or gels. The aim of our study was to develop stable Oil-in-Water (O/W) nanoemulsions that are compatible with selected fragrance compositions, without ethanol, polyols, and ionic surfactants, and to study their physicochemical, microbiological, and dermatological properties. The nano-perfume systems were obtained with a low-energy (Phase Inversion Composition; PIC) and with a high-energy (ultrasound, US) method, taking into account the possibility of moving from the laboratory scale to an industrial scale. The optimized nano-perfume formulations, prepared with different methods, yielded the same physicochemical properties (stability, medium droplet size of the inner phase, polydispersity, viscosity, surface tension, pH, density). Stable systems were obtained with a fragrance composition concentration within 6–15% range. These formulations had a low viscosity and a pH suitable for the skin. Moreover, the obtained results confirmed the protective role of nanoemulsions. The peroxide number measurement (POV) showed that the tested fragrance compositions had a high chemical stability. The results of the microbiological tests confirmed that the obtained products were free of microbiological contamination and were appropriately preserved. The dermatological test results confirmed the safety of the developed preparations.


Lab on a Chip ◽  
2011 ◽  
Vol 11 (6) ◽  
pp. 1151 ◽  
Author(s):  
Ladislav Derzsi ◽  
Paweł Jankowski ◽  
Wojciech Lisowski ◽  
Piotr Garstecki

Sign in / Sign up

Export Citation Format

Share Document