scholarly journals Preparation and Characterization of Water-Based Nano-Perfumes

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 981 ◽  
Author(s):  
Małgorzata Miastkowska ◽  
Elwira Lasoń ◽  
Elżbieta Sikora ◽  
Katarzyna Wolińska-Kennard

The application of nanoemulsions as a novel delivery system for lipophilic materials, such as essential oils, flavors, and fragrances is one of the growing technologies used in cosmetic, pharmaceutical, and food industries. Their characteristic properties, like small droplet size with high interfacial area, transparent or semi-transparent appearance, low viscosity, and high kinetic stability, make them a perfect vehicle for fragrances, in the perfume industry. They could be a great alternative to water-based perfumes, without alcohol, and solve problems related to the oxidation and low bioavailability of fragrances with other non-alcoholic vehicles of perfumes like pomades or gels. The aim of our study was to develop stable Oil-in-Water (O/W) nanoemulsions that are compatible with selected fragrance compositions, without ethanol, polyols, and ionic surfactants, and to study their physicochemical, microbiological, and dermatological properties. The nano-perfume systems were obtained with a low-energy (Phase Inversion Composition; PIC) and with a high-energy (ultrasound, US) method, taking into account the possibility of moving from the laboratory scale to an industrial scale. The optimized nano-perfume formulations, prepared with different methods, yielded the same physicochemical properties (stability, medium droplet size of the inner phase, polydispersity, viscosity, surface tension, pH, density). Stable systems were obtained with a fragrance composition concentration within 6–15% range. These formulations had a low viscosity and a pH suitable for the skin. Moreover, the obtained results confirmed the protective role of nanoemulsions. The peroxide number measurement (POV) showed that the tested fragrance compositions had a high chemical stability. The results of the microbiological tests confirmed that the obtained products were free of microbiological contamination and were appropriately preserved. The dermatological test results confirmed the safety of the developed preparations.

2021 ◽  
Author(s):  
Ozlem Ozen Karakus ◽  
Noureldien H. E. Darwish ◽  
Taher Salaheldin ◽  
P. C. Taylor Dickinson ◽  
Brian Weil ◽  
...  

Abstract Background: Ischemic heart disease is the main cause of death globally. Cardioprotection is the process whereby mechanisms that reduce myocardial damage, and activate protective factors, contribute to the preservation of the heart. Targeting these processes could be a new strategy in the treatment of post-ischemic heart failure (HF). Triiodothyronine (T3) and thyroxine (T4), which have multiple effects on the heart, prevent myocardial damage. Results: This study describes the formulation, and characterization, of chemically modified polymeric nanoparticles incorporating T3, to target the thyroid hormone receptors. Modified T3 was conjugated to polylactide-co-glycolide (PLGA) to facilitate the active targeting of PLGA-T3. Modified T3 and PLGA-T3 was characterized with 1H-NMR. Protective role of synthesized Phosphocreatine (PCr) encapsulated PLGA-T3 nanoparticles (PLGA-T3/PCr NPs) and PLGA-T3 nanoparticles (PLGA-T3 NPs) in hypoxia-mediated cardiac cell insults were investigated. Conclusions: Data demonstrated that PLGA-T3/PCr NPs represent a potentially new therapeutic for the control of tissue damage in cardiac ischemia and resuscitation.


2021 ◽  
Author(s):  
Kristina Kvashnina ◽  
Sergei M Butorin

In recent years, scientists have progressively recognized the role of electronic structure in the characterization of chemical properties for actinide containing materials. High-energy resolution X-ray spectroscopy at the actinide M4,5...


2008 ◽  
Vol 587-588 ◽  
pp. 182-186 ◽  
Author(s):  
Renato Luiz Siqueira ◽  
Luiz Claudio Pardini ◽  
Inez Valéria Pagotto Yoshida ◽  
Marco Antônio Schiavon

This work reports the synthesis and thermal characterization of poly(borosiloxanes) (PBS) derived from methyltrietoxysilane (MTES) and vinyltriethoxysilane (VTES), aiming to use these polymers as precursors of ceramic matrices for the protection of carbon fibers in ceramic matrix composites (CMCs). The resulting materials exhibited better thermal stability than the carbon fiber, especially the Cfiber/SiBCO composite derived of the methyltriethoxysilane (MTES) system prepared with a B/Si ratio of 0.5. This study showed that poly(borosiloxanes) are promising materials for the oxidation protection of carbon fibers, and consequently for thermal protection systems.


2012 ◽  
Vol 16 (12) ◽  
pp. 1384-1400 ◽  
Author(s):  
Briseida Cacho-Valadez ◽  
Fernando Muñoz-Lobato ◽  
José Rafael Pedrajas ◽  
Juan Cabello ◽  
Juan Carlos Fierro-González ◽  
...  

Author(s):  
Muhammad Mushtaq ◽  
Umer Sadique ◽  
Faizan Said ◽  
Muqaddar Shah ◽  
Haq Amanullah ◽  
...  

2016 ◽  
Vol 42 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Carolina Favaro Francisconi ◽  
Andreia Espindola Vieira ◽  
Claudia Cristina Biguetti ◽  
Andrew J. Glowacki ◽  
Ana Paula Favaro Trombone ◽  
...  

2006 ◽  
Vol 188 (5) ◽  
pp. 1920-1928 ◽  
Author(s):  
Julie M. Yang ◽  
Patricio J. DeUrraza ◽  
Nadya Matvienko ◽  
Daniel J. O'Sullivan

ABSTRACT The native lactococcal plasmid, pKR223, from Lactococcus lactis subsp. lactis biovar diacetylactis KR2 encodes two distinct bacteriophage-resistant mechanisms, the LlaKR2I restriction and modification (R/M) system and the abortive infection (Abi) mechanism, AbiR, that impedes bacteriophage DNA replication. This study completed the characterization of AbiR, revealing that it is the first Abi system to be encoded by three genes, abiRa, abiRb, and abiRc, arranged in an operon and that it requires the methylase gene from the LlaKR2I R/M system. An analysis of deletion and insertion clones demonstrated that the AbiR operon was toxic in L. lactis without the presence of the LlaKR2I methylase, which is required to protect L. lactis from AbiR toxicity. The novelty of the AbiR system resides in its original gene organization and the unusual protective role of the LlaKR2I methylase. Interestingly, the AbiR genetic determinants are flanked by two IS982 elements generating a likely transposable AbiR composite. This observation not only substantiated the novel function of the LlaKR2I methylase in the AbiR system but also illustrated the evolution of the LlaKR2I methylase toward a new and separate cellular function. This unique structure of both the LlaKR2I R/M system and the AbiR system may have contributed to the evolution of the LlaKR2I methylase toward a novel role comparable to that of the cell cycle-regulated methylases that include Dam and CcrM methylases. This new role for the LlaKR2I methylase offers a unique snapshot into the evolution of the cell cycle-regulated methylases from an existing R/M system.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1713
Author(s):  
Ozlem Ozen Karakus ◽  
Noureldien H. E. Darwish ◽  
Thangirala Sudha ◽  
Taher A. Salaheldin ◽  
Kazutoshi Fujioka ◽  
...  

Ischemic heart disease is the main cause of death globally. Cardioprotection is the process whereby mechanisms that reduce myocardial damage, and activate protective factors, contribute to the preservation of the heart. Targeting these processes could be a new strategy in the treatment of post-ischemic heart failure (HF). Triiodothyronine (T3) and thyroxine (T4), which have multiple effects on the heart, prevent myocardial damage. This study describes the formulation, and characterization, of chemically modified polymeric nanoparticles incorporating T3, to target the thyroid hormone receptors. Modified T3 was conjugated to polylactide-co-glycolide (PLGA) to facilitate T3 delivery and restrict its nuclear translocation. Modified T3 and PLGA-T3 was characterized with 1H-NMR. The protective role of synthesized phosphocreatine (PCr) encapsulated PLGA-T3 nanoparticles (PLGA-T3/PCr NPs) and PLGA-T3 nanoparticles (PLGA-T3 NPs) in hypoxia-mediated cardiac cell insults was investigated. The results showed that PLGA-T3/PCr NPs represent a potentially new therapeutic agent for the control of tissue damage in cardiac ischemia and resuscitation.


Sign in / Sign up

Export Citation Format

Share Document