Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management

2018 ◽  
Vol 618 ◽  
pp. 210-218 ◽  
Author(s):  
Pu Shi ◽  
Rainer Schulin
2016 ◽  
Author(s):  
Arístide Márquez ◽  
Gregorio Martínez ◽  
Julio Figuera ◽  
Ivis Fermín ◽  
William James Senior ◽  
...  

This paper reports the geochemical characteristics and environmental conditions of Cuchivero river sediments in Venezuela, depending on particle size, organic matter, organic carbon, nitrogen and total phosphorus, carbonates and heavy metals. The granulometry was typified by a predominance of sands with low organic matter (0.52 to 0.87%), organic carbon (0.06 to 0.09%) and carbonates content (0.54 to 2.61%) as well as high values of total nitrogen (602-985 mg / kg). The poor correlation between nitrogen, phosphorus and organic matter, suggests presence of nitrogen and total phosphorus of allochthonous origin and no Redfield organic matter. The average heavy metals in mg/kg, showed a descending concentration gradient, Fe (410)> Mn (63.14)> Zn (9.01)> Ni (3.38)> (2.21Cu)> Cr (2.09)> Co (1.13)> Cd (0.21) > Pb (0.07) mg / kg, with an association to the sands and carbonates, suggesting lithogenic origin. From the environmental point of view, there is no evidence of anthropogenic impact, as reflected by levels of organic matter and heavy metals which are below of the permissible values.


2012 ◽  
Author(s):  
Consuelo Lima Navarro de Andrade ◽  
Joil José Celino ◽  
Ronaldo Montenegro Barbosa ◽  
Karina Santos Garcia ◽  
Narayana Flora Costa Escobar

O comportamento biogeoquímico do carbono, nitrogênio, fósforo e metais, e os isótopos traçadores naturais da matéria orgânicaforam estudados nos sedimentos e plantas em 15 pontos no estuário do rio Passa Vaca, situado em área urbana de Salvador, Bahia, Brasil.Nos sedimentos, a ordem dos elementos investigados foi: Fe > Al > Ca > P > Na >Cu >K > Zn > Mn, para a espécie Laguncularia racemosa (L.)Gaertn observou-se: Na > Ca > K > Fe > Mn > Al > Zn > Cu; e para Rhizophora mangle L: Na > Ca > K > Mn > Fe > Al > Zn > Cu além decorrelações sedimento/planta na concentração dos elementos. Entretanto, os fatores de concentração para os metais pesados estiveramabaixo de 1 indicando baixa absorção destes pelas plantas. O Carbono Orgânico Total (COT) variou de 1,03 a 4,77%. A razão molar C/N eisotópicas 13C e 15C indicaram que um percentual considerável da matéria orgânica é de fonte terrestre, sendo proveniente da vegetaçãodo próprio manguezal.Palavras-chave: Metais, matéria orgânica, isótopos. ABSTRACTBIOGEOCHEMISTRY OF ORGANIC MATTER AND METALS IN A MANGROVE AT THE URBAN ESTUARINE AREA, BAHIA, BRAZIL -The biogeochemical behavior of carbon, nitrogen, phosphorus, metals and natural tracer isotopes of organic matter were studied insediments and plants at 15 points in the estuary of the Passa Vaca River, located in urban area of Salvador, Bahia, Brazil. Sedimentelements were the order: Fe> Al> Ca> P> Na> Cu> K> Zn> Mn, for the specie Laguncularia racemosa (L.) Gaertn was observed: Na> Ca> K>Fe> Mn> Al> Zn> Cu, and Rhizophora mangle L: Na> Ca> K> Mn> Fe> Al> Zn> Cu. Correlations were also observed sediment/plant in theconcentration of elements evaluated. However, the concentration factors for heavy metals were below 1 indicating low absorption ofthese plants. The Total Organic Carbon (TOC) ranged from 1.03 to 4.77%. The molar ratio C / N and isotopic 13C and 15C indicated that asignificant percentage of organic matter is land-based sources, and from the mangrove vegetation itself.Keywords: Metals, organic matter, isotopes.


2016 ◽  
Vol 2 (91) ◽  
pp. 17-21
Author(s):  
S. H. Korsun ◽  
N. I. Dovbash

The aim of the study was to establish changes in the physico-chemical and agrochemical characteristics of gray forest large-clay loamy soil, depending on the contamination of ecotopes by heavy metals. Methods. Field, laboratory, mathematical and statistical. Results. The results of the study of the soil of areas with an over-dimensioned content of heavy metals and the transformation of agrochemical characteristics of gray forest soil in the cultivation of corn for grain. It was established that under conditions of systematic application of mineral fertilizers in agrocenoses, an increase in the lead concentration to 100 mg/kg, cadmium to 2,0, zinc to 50 mg/kg in gray forest soil did not result in a decrease in the amount available forms of nitrogen, phosphorus, potassium by plants, compared with the natural background. Concentration of lead in the amount of 1000 mg/kg, cadmium – 20, zinc – 500 mg/kg marked an increase in exchange and hydrolytic acidity and loss of humus.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 85-94 ◽  
Author(s):  
Michael O. Angelidis

The impact of the urban effluents of Mytilene (Lesvos island, Greece) on the receiving coastal marine environment, was evaluated by studying the quality of the city effluents (BOD5, COD, SS, heavy metals) and the marine sediments (grain size, organic matter, heavy metals). It was found that the urban effluents of Mytilene contain high organic matter and suspended particle load because of septage discharge into the sewerage network. Furthermore, although the city does not host important industrial activity, its effluents contain appreciable metal load, which is mainly associated with the particulate phase. The city effluents are discharged into the coastal marine environment and their colloidal and particulate matter after flocculation settles to the bottom, where is incorporated into the sediments. Over the years, the accumulation of organic matter and metals into the harbour mud has created a non-point pollution source in the relatively non-polluted coastal marine environment of the island. Copper and Zn were the metals which presented the higher enrichment in the sediments of the inner harbour of Mytilene.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


Sign in / Sign up

Export Citation Format

Share Document