PMN and anti-tumor immunity—The case of bladder cancer immunotherapy

2013 ◽  
Vol 23 (3) ◽  
pp. 183-189 ◽  
Author(s):  
Erik L. Brincks ◽  
Michael C. Risk ◽  
Thomas S. Griffith
2021 ◽  
Vol 9 ◽  
pp. 232470962110356
Author(s):  
Balraj Singh ◽  
Parminder Kaur ◽  
Sachin Gupta ◽  
Nirmal Guragai ◽  
Michael Maroules

Bladder cancer is the most common urinary tract malignancy. Platinum-based chemotherapy is the first line of treatment in locally advanced or metastatic bladder cancer. Immunotherapy has become a novel therapy option in a broad variety of malignancies including bladder cancer. Immunotherapy is approved as first line of treatment in patients who are ineligible for platinum-based chemotherapy and second-line treatment for metastatic urothelial cancer who progressed after platinum-based treatments. We present the case of an 83-year-old female with metastatic bladder cancer who was chemotherapy ineligible and had complete response with immune checkpoint inhibitor pembrolizumab.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


2012 ◽  
Vol 14 (3) ◽  
pp. 252-260 ◽  
Author(s):  
Pei Zhang ◽  
Jinyan Wang ◽  
Danan Wang ◽  
Huan Wang ◽  
Fengping Shan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


2020 ◽  
Author(s):  
Xiaoqing Wang ◽  
Collin Tokheim ◽  
Binbin Wang ◽  
Shengqing Stan Gu ◽  
Qin Tang ◽  
...  

SUMMARYDespite remarkable clinical efficacies of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits in triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that inhibition of the E3 ubiquitin ligase Cop1 in cancer cells decreases the secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, and shows synergy in anti-tumor immunity with ICB. Transcriptomics, epigenomics, and proteomics analyses revealed Cop1 functions through proteasomal degradation of the C/ebpδ protein. Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. Cop1 inhibition stabilizes C/ebpδ to suppress the expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy by regulating chemokine secretion and macrophage levels in the TNBC tumor microenvironment.HighlightsLarge-scale in vivo CRISPR screens identify new immune targets regulating the tumor microenvironmentCop1 knockout in cancer cells enhances anti-tumor immunityCop1 modulates chemokine secretion and macrophage infiltration into tumorsCop1 targets C/ebpδ degradation via Trib2 and influences ICB response


Aging ◽  
2021 ◽  
Author(s):  
Ranran Zhou ◽  
Xinyu Chen ◽  
Jingjing Liang ◽  
Qi Chen ◽  
Hu Tian ◽  
...  

2020 ◽  
Vol 295 (1) ◽  
pp. 203-219 ◽  
Author(s):  
William J. Turbitt ◽  
Claire Buchta Rosean ◽  
K. Scott Weber ◽  
Lyse A. Norian

Nano Today ◽  
2020 ◽  
Vol 35 ◽  
pp. 100923 ◽  
Author(s):  
Ling-xiao Zhang ◽  
Xia-mei Sun ◽  
Ying-bo Jia ◽  
Xiao-ge Liu ◽  
Mingdong Dong ◽  
...  

1982 ◽  
Vol 128 (5) ◽  
pp. 931-935 ◽  
Author(s):  
Donald L. Lamm ◽  
Daniel E. Thor ◽  
Valerie D. Stogdill ◽  
Howard M. Radwin

Sign in / Sign up

Export Citation Format

Share Document