Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT)

2020 ◽  
Vol 98 ◽  
pp. 192-201 ◽  
Author(s):  
Valentina Audrito ◽  
Antonella Managò ◽  
Federica Gaudino ◽  
Silvia Deaglio
2020 ◽  
Author(s):  
Ranjeet Singh Mahla ◽  
Akhilesh Kumar ◽  
Helena Tutil ◽  
Sreevidhya Tarakkad Krishnaji ◽  
Bharathwaj Sathyamoorthy ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Hema Artee Luchman ◽  
Joseph Costello ◽  
...  

Abstract Telomeres are nucleoprotein structures at chromosomal ends that shorten with cell division and constitute a natural barrier to proliferation. In order to proliferate indefinitely, all tumors require a telomere maintenance mechanism (TMM). Telomerase reverse transcriptase (TERT) expression is the TMM in most tumors, including low-grade oligodendrogliomas (LGOGs). In contrast, low-grade astrocytomas (LGAs) use the alternative lengthening of telomeres (ALT) pathway as their TMM. As molecular hallmarks of tumor proliferation, TMMs are attractive tumor biomarkers and therapeutic targets. Non-invasive imaging of TMM status will, therefore, allow assessment of tumor proliferation and treatment response. However, translational methods of imaging TMM status are lacking. Here, we show that TERT expression and the ALT pathway are associated with unique magnetic resonance spectroscopy (MRS)-detectable metabolic reprogramming in LGOGs and LGAs respectively. In genetically-engineered and patient-derived LGOG models, TERT expression is linked to elevated 1H-MRS-detectable NAD(P)/H, glutathione, aspartate and AXP. In contrast, the ALT pathway in LGAs is associated with higher α-ketoglutarate, glutamate, alanine and AXP. Importantly, elevated flux of hyperpolarized [1-13C]-alanine to pyruvate, which depends on α-ketoglutarate, is a non-invasive in vivo imaging biomarker of the ALT pathway in LGAs while elevated flux of hyperpolarized [1-13C]-alanine to lactate, which depends on NADH, is an imaging biomarker of TERT expression in LGOGs. Mechanistically, the ALT pathway in LGAs is linked to higher glutaminase (GLS), a key enzyme for α-ketoglutarate biosynthesis while TERT expression in LGOGs is associated with elevated nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme for NADH biosynthesis. Notably, TERT expression and the ALT pathway are linked to MRS-detectable metabolic reprogramming in LGOG and LGA patient biopsies, emphasizing the clinical validity of our observations. Collectively, we have identified unique metabolic signatures of TMM status that integrate critical oncogenic information with noninvasive imaging modalities that can improve diagnosis and treatment response monitoring for LGOG and LGA patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1362
Author(s):  
Françoise Gondois-Rey ◽  
Magali Paul ◽  
Florence Alcaraz ◽  
Sarah Bourass ◽  
Jilliana Monnier ◽  
...  

PMN-MDSCs support tumor progression and resistance to ICI therapy through their suppressive functions but their heterogeneity limits their use as biomarkers in cancer. Our aim was to investigate the phenotypic and functional subsets of PMN-MDSCs to identify biomarkers of response to ICI therapy. We isolated low-density CD15+ PMNs from patients with metastatic melanoma and assessed their immune-suppressive capacities. Expression of CD10 and CD16 was used to identify mature and immature subsets and correlate them to inhibition of T cell proliferation or direct cytotoxicity. Frequencies of the PMN-MDSCs subsets were next correlated to the radiological response of 36 patients receiving ICI therapy. Mature activated cells constituted the major population of PMN-MDSCs. They were found in a higher proportion in the pre-treatment blood of patients non responders to ICI. A subset of immature cells characterized by intermediate levels of CD10 and CD16, the absence of expression of SIRPα and a strong direct cytotoxicity to T cells was increased in patients responding to ICI. The paradoxical expansion of such cells during ICI therapy suggests a role of PMNs in the inflammatory events associated to efficient ICI therapy and the usefulness of their monitoring in patients care.


2020 ◽  
Vol 32 (7) ◽  
pp. 485-491 ◽  
Author(s):  
Michael P Plebanek ◽  
Michael Sturdivant ◽  
Nicholas C DeVito ◽  
Brent A Hanks

Abstract The dendritic cell (DC) is recognized as a vital mediator of anti-tumor immunity. More recent studies have also demonstrated the important role of DCs in the generation of effective responses to checkpoint inhibitor immunotherapy. Metabolic programming of DCs dictates their functionality and can determine which DCs become immunostimulatory versus those that develop a tolerized phenotype capable of actively suppressing effector T-cell responses to cancers. As a result, there is great interest in understanding what mechanisms have evolved in cancers to alter these metabolic pathways, thereby allowing for their continued progression and metastasis. The therapeutic strategies developed to reverse these processes of DC tolerization in the tumor microenvironment represent promising candidates for future testing in combination immunotherapy clinical trials.


2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Idit Melnik ◽  
Michal Lotem ◽  
Boris Yoffe

Vemurafenib is approved by the FDA for the management of unresectable or metastatic melanoma. However, its role as a neoadjuvant therapy has not been determined. We present the first documented case in which vemurafenib induced complete tumor necrosis of both lymph node and brain metastases within one month or less, an outcome that indicated that the patient was a good candidate for excisional surgery.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2284
Author(s):  
Serena Stamatakos ◽  
Giovanni Luca Beretta ◽  
Elisabetta Vergani ◽  
Matteo Dugo ◽  
Cristina Corno ◽  
...  

Metabolic changes promoting cell survival are involved in metastatic melanoma progression and in the development of drug resistance. In BRAF-inhibitor resistant melanoma cells, we explored the role of FASN, an enzyme involved in lipogenesis overexpressed in metastatic melanoma. Resistant melanoma cells displaying enhanced migratory and pro-invasive abilities increased sensitivity to the BRAF inhibitor PLX4032 upon the molecular targeting of FASN and upon treatment with the FASN inhibitor orlistat. This behavior was associated with a marked apoptosis and caspase 3/7 activation observed for the drug combination. The expression of FASN was found to be inversely associated with drug resistance in BRAF-mutant cell lines, both in a set of six resistant/sensitive matched lines and in the Cancer Cell Line Encyclopedia. A favorable drug interaction in resistant cells was also observed with U18666 A inhibiting DHCR24, which increased upon FASN targeting. The simultaneous combination of the two inhibitors showed a synergistic interaction with PLX4032 in resistant cells. In conclusion, FASN plays a role in BRAF-mutated melanoma progression, thereby creating novel therapeutic opportunities for the treatment of melanoma.


Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


2021 ◽  
Vol 49 (2) ◽  
pp. 815-827
Author(s):  
Giancarlo Solaini ◽  
Gianluca Sgarbi ◽  
Alessandra Baracca

In the last two decades, IF1, the endogenous inhibitor of the mitochondrial F1Fo-ATPase (ATP synthase) has assumed greater and ever greater interest since it has been found to be overexpressed in many cancers. At present, several findings indicate that IF1 is capable of playing a central role in cancer cells by promoting metabolic reprogramming, proliferation and resistance to cell death. However, the mechanism(s) at the basis of this pro-oncogenic action of IF1 remains elusive. Here, we recall the main features of the mechanism of the action of IF1 when the ATP synthase works in reverse, and discuss the experimental evidence that support its relevance in cancer cells. In particular, a clear pro-oncogenic action of IF1 is to avoid wasting of ATP when cancer cells are exposed to anoxia or near anoxia conditions, therefore favoring cell survival and tumor growth. However, more recently, various papers have described IF1 as an inhibitor of the ATP synthase when it is working physiologically (i.e. synthethizing ATP), and therefore reprogramming cell metabolism to aerobic glycolysis. In contrast, other studies excluded IF1 as an inhibitor of ATP synthase under normoxia, providing the basis for a hot debate. This review focuses on the role of IF1 as a modulator of the ATP synthase in normoxic cancer cells with the awareness that the knowledge of the molecular action of IF1 on the ATP synthase is crucial in unravelling the molecular mechanism(s) responsible for the pro-oncogenic role of IF1 in cancer and in developing related anticancer strategies.


2021 ◽  
Author(s):  
Bo Cao ◽  
Huan Deng ◽  
Hao Cui ◽  
Ruiyang Zhao ◽  
Hanghang Li ◽  
...  

Abstract Background Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. MethodsCorrelation and enrichment analysis of PGM1 was conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan-Meier Plotter database were analyzed for correlations between PGM1 expression and survival time of GC patients. CCK-8, EdU, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and detection of lipid regulators levels by western blot were used to reflect on the cell lipid metabolism. ResultsCorrelation and enrichment analysis suggested that PGM1 was closely associated with cell proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients, which was also correlated with some clinicopathological features, including T stage and TNM stage. Under low glucose conditions, knockdown of PGM1 significantly suppressed cell proliferation and glycolysis levels, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity for obesity treatment, effectively induced apoptosis, suppressed FASN activity. However, orlistat conversely increased glycolytic levels in GC cells. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism. ConclusionsDownregulation of PGM1 expression under glucose deprivation synergistically enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment.


Sign in / Sign up

Export Citation Format

Share Document