Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties

2021 ◽  
Vol 317 ◽  
pp. 112457
Author(s):  
I.A. Kalinin ◽  
I.V. Roslyakov ◽  
D.M. Tsymbarenko ◽  
D.A. Bograchev ◽  
V.V. Krivetskiy ◽  
...  
Author(s):  
Fatma Boukid ◽  
Elena Curti ◽  
Agoura Diantom ◽  
Eleonora Carini ◽  
Elena Vittadini

AbstractIndustrial processing of tomato includes its cutting and mincing, thermal treatments, and the addition of ingredients, which might induce changes in physicochemical properties of the final products. In this frame, the impact of texturing/thickening [xanthan gum (X) or potato fiber (F)] on the macroscopic, mesoscopic and molecular properties of tomato double concentrate (TDC) was investigated to determine if F can efficiently substitute X, in association with small solutes (sugar and salt) and thermal treatment (cold and hot). At a macroscopic level, multivariate statistics (MANOVA) underlined that color change (ΔE) was increased by X and F addition contrary to heating and the addition of salt and sugar. MANOVA revealed that texture was greatly enhanced through the use of F over X. 1H NMR molecular mobility changes were more controlled by texturing agents (F and X) than thermal treatment and small solutes. Particularly F increased the more rigid population indicating stronger interaction with water molecules resulting in shear-thinning flow. However, adding X contributed into the increase of the dynamic and mobile populations. Therefore, F can be a valid “clean label” substitute of X in modulating tomato products properties.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1639
Author(s):  
Emma Neylon ◽  
Elke K. Arendt ◽  
Emanuele Zannini ◽  
Aylin W. Sahin

Recycling of by-products from the food industry has become a central part of research to help create a more sustainable future. Brewers’ spent grain is one of the main side-streams of the brewing industry, rich in protein and fibre. Its inclusion in bread, however, has been challenging and requires additional processing. Fermentation represents a promising tool to elevate ingredient functionality and improve bread quality. Wheat bread was fortified with spray-dried brewers’ spent grain (BSG) and fermented brewers’ spent grain (FBSG) at two addition levels to achieve “source of fibre” and “high in fibre” claims according to EU regulations. The impact of BSG and FBSG on bread dough, final bread quality and nutritional value was investigated and compared to baker’s flour (BF) and wholemeal flour (WMF) breads. The inclusion of BSG and FBSG resulted in a stronger and faster gluten development; reduced starch pasting capacity; and increased dough resistance/stiffness. However, fermentation improved bread characteristics resulting in increased specific volume, reduced crumb hardness and restricted microbial growth rate over time. Additionally, the inclusion of FBSG slowed the release in reducing sugars over time during in vitro starch digestion. Thus, fermentation of BSG can ameliorate bread techno-functional properties and improve nutritional quality of breads.


2019 ◽  
Vol 56 (12) ◽  
pp. 5184-5193 ◽  
Author(s):  
Nédio Jair Wurlitzer ◽  
Ana Paula Dionísio ◽  
Janice Ribeiro Lima ◽  
Deborah dos Santos Garruti ◽  
Idila Maria da Silva Araújo ◽  
...  

2009 ◽  
Vol 24 (8) ◽  
pp. 2561-2573 ◽  
Author(s):  
Spyros Gallis ◽  
Vasileios Nikas ◽  
Eric Eisenbraun ◽  
Mengbing Huang ◽  
Alain E. Kaloyeros

The composition, structure, morphology, and optical characteristics of hydrogenated amorphous silicon-oxycarbide (a-SiCxOyHz) materials were investigated as a function of experimental processing conditions and post-deposition thermal treatment. Thermal chemical vapor deposition (TCVD) was applied to the growth of three different types of a-SiCxOyHz films, namely, SiC-like (SiC1.08O0.07H0.21), Si-C-O (SiC0.50O1.20H0.22), and SiO2-like (SiC0.20O1.70H0.24). The resulting films were subsequently annealed at temperatures ranging from 500 °C to 1100 °C for 1 h in an argon atmosphere. The composition, structure, and morphology of as-deposited and post-annealed films were characterized by Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), nuclear-reaction analysis (NRA), and scanning electron microscopy. Corresponding optical properties were assessed by spectroscopic ultraviolet-visible ellipsometry (UV-VIS-SE). These studies led to the identification of an optimized process window for the growth of Er doped silicon oxycarbide (SiC0.5O1.0:Er) thin film with strong room-temperature photoluminescence emission measured around 1540 nm within a broad (460 nm to 600 nm) wavelength band. Associated modeling studies showed that the effective cross section for Er excitation in the SiC0.5O1.0:Er matrix was approximately four orders of magnitude larger than its analog for direct optical excitation of Er ions.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Sugimoto ◽  
H Yamada ◽  
H Kubota ◽  
D Miyawaki ◽  
M Saburi ◽  
...  

Abstract Background and objective Depression is an independent risk factor of cardiovascular disease (CVD). We have recently shown that repeated social defeat (RSD) precipitates depressive-like behaviors in apoE−/− mice and exaggerates atherosclerosis development by enhancing neutrophil extracellular traps (NETs) formation. Here, we investigated the impact of RSD on arterial thrombosis. Methods and results Eight-week-old male WT mice were exposed to RSD by housing with a larger CD-1 mouse in a shared home cage. They were subjected to vigorous physical contact daily for 10 consecutive days. Control mice were housed in the same gage without physical contact. After social interaction test to confirm depressive-like behaviors, defeated mice (19 of 31) and control mice (12 of 14) were underwent arterial injury at 10 wks of age. A filter paper saturated with 10% FeCl3 was applied on the adventitial surface of left carotid artery for 3 min and analyzed 3 hrs later. The volume of thrombi was comparable between the two groups. However, fibrinogen/fibrin-positive areas in immunofluorescent images significantly increased in defeated mice (27.8% vs. 48.8%, p<0.01). The number of Ly-6G-positive cells in thrombi was markedly higher in defeated mice (144/mm2 vs. 878/mm2, p<0.05). Further, Ly-6G-positive cells were almost accumulated at the inner surface of injured artery, which were co-localized with neutrophil elastase, Cit-H3, and CD41-positive staining. Treatment with DNase I completely diminished the exaggerated fibrin-rich clot formation in defeated mice to an extent similar to that in control mice (25.7% vs. 22.3%, p = ns), without affecting the volume of thrombi and accumulation of Ly-6G-positive cells. Given that platelet aggregations induced by ADP or collagen were comparable between the two groups, neutrophil functional properties primarily contribute to the exaggerated fibrin-rich clot formation in defeated mice. We then examined neutrophil subset and vulnerability to NETs formation. At 3 hrs after FeCl3 application, the numbers of immature neutrophils (Ly6Glo/+CXCR2-) were comparable between the two groups in both bone marrow (BM) and peripheral blood (PB). In contrast, the number of PB mature neutrophils (Ly6G+CXCR2+) was markedly higher in defeated mice than control mice (580±68 /μl vs. 1265±114, p<0.01). We next examined in vitro NETs formation upon PMA in BM mature neutrophils by FACS and nucleic acid staining. The percentage of double-positive cells (Cit-H3, MPO) was significantly higher in defeated mice (7.5% vs. 10.2%, p<0.05), as well as SYTOX green-positive cells expelling DNA fibers (8.1% vs. 11.8%, p<0.05). Conclusions Our findings demonstrate for the first time that repeated social defeat enhances fibrin-rich clot formation after arterial injury by enhancing NETs formation via modulation of neutrophil functional properties, suggesting that NETosis could be a new therapeutic target in depression-related CVD development. Funding Acknowledgement Type of funding source: None


2021 ◽  
pp. 76-96
Author(s):  
Alexander Likhachev

Natural materials and processes represent the global substance reflecting and determining its formation and existence as a whole and in all its components. Revealing the reasons for their formation and manifestation is crucial. The paper highlights the two main factors: «influences» and «gradients». Influences are interpreted as the impact of some substances and events on other similar parameters, and gradients are vector changes and differences in systems composition, structure, properties, states, energy and thermodynamic parameters. To provide an insight into the role and significance of the above factors and reasons, an attempt was made to consider their potential manifestation throughout the general world history within the existing knowledge about it.


2014 ◽  
Vol 59 (3) ◽  
pp. 1033-1036 ◽  
Author(s):  
I. Izdebska-Szanda ◽  
A. Baliński ◽  
M. Angrecki ◽  
A. Palma

Abstract A method for the chemical modification of silicate binder (hydrated sodium silicate) affecting the distribution of its nanostructure elements was disclosed. The effect of silicate binder modification on the resulting technological properties of moulding sands, determined under standard conditions and at elevated temperatures in the range from 1000C to 9000C, was discussed. Modification of this type is done on inorganic binders in order to reduce their unfavourable functional properties. It is particularly important when moulding sands with the silicate binder are used for casting of low-melting alloys. Therefore special attention was paid to the impact that modification of inorganic binders may have on the knocking out properties of sands prepared with these binders, when they are used in the process of casting non-ferrous alloys.


Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Соловьев ◽  
Dmitriy Solovyev ◽  
Александр Хандожко ◽  
...  

The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Robert C. Kauffman ◽  
Oluwaseyi Adekunle ◽  
Hanyi Yu ◽  
Alice Cho ◽  
Lindsay E. Nyhoff ◽  
...  

ABSTRACT Vibrio cholerae causes the severe diarrheal disease cholera. Clinical disease and current oral cholera vaccines generate antibody responses associated with protection. Immunity is thought to be largely mediated by lipopolysaccharide (LPS)-specific antibodies, primarily targeting the O-antigen. However, the properties and protective mechanism of functionally relevant antibodies have not been well defined. We previously reported on the early B cell response to cholera in a cohort of Bangladeshi patients, from which we characterized a panel of human monoclonal antibodies (MAbs) isolated from acutely induced plasmablasts. All antibodies in that previous study were expressed in an IgG1 backbone irrespective of their original isotype. To clearly determine the impact of affinity, immunoglobulin isotype and subclass on the functional properties of these MAbs, we re-engineered a subset of low- and high-affinity antibodies in different isotype and subclass immunoglobulin backbones and characterized the impact of these changes on binding, vibriocidal, agglutination, and motility inhibition activity. While the high-affinity antibodies bound similarly to O-antigen, irrespective of isotype, the low-affinity antibodies displayed significant avidity differences. Interestingly, despite exhibiting lower binding properties, variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies, suggesting that how the MAb binds to the O-antigen may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition. IMPORTANCE Immunity to the severe diarrheal disease cholera is largely mediated by lipopolysaccharide (LPS)-specific antibodies. However, the properties and protective mechanisms of functionally relevant antibodies have not been well defined. Here, we have engineered low and high-affinity LPS-specific antibodies in different immunoglobulin backbones in order to assess the impact of affinity, immunoglobulin isotype, and subclass on binding, vibriocidal, agglutination, and motility inhibition functional properties. Importantly, we found that affinity did not directly dictate functional potency since variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies. This suggests that how the antibody binds sterically may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.


Sign in / Sign up

Export Citation Format

Share Document