Fabrication of 3D rotor-like ZnO nanostructure from 1D ZnO nanorods and their morphology dependent photoluminescence property

2010 ◽  
Vol 12 (10) ◽  
pp. 1703-1710 ◽  
Author(s):  
Prabhakar Rai ◽  
Jin-Nyeong Jo ◽  
In-Hwan Lee ◽  
Yeon-Tae Yu
2006 ◽  
Vol 99 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Aiwu Zhao ◽  
Tao Luo ◽  
Luyang Chen ◽  
Yong Liu ◽  
Xiaoguang Li ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6124
Author(s):  
Junhyuk Yoo ◽  
Uijin Jung ◽  
Bomseumin Jung ◽  
Wenhu Shen ◽  
Jinsub Park

Although ZnO nanostructure-based photodetectors feature a well-established system, they still present difficulties when being used in practical situations due to their slow response time. In this study, we report on how forming an amorphous SnO2 (a-SnO2) shell layer on ZnO nanorods (NRs) enhances the photoresponse speed of a ZnO-based UV photodetector (UV PD). Our suggested UV PD, consisting of a ZnO/a-SnO2 NRs core–shell structure, shows a rise time that is 26 times faster than a UV PD with bare ZnO NRs under 365 nm UV irradiation. In addition, the light responsivity of the ZnO/SnO2 NRs PD simultaneously increases by 3.1 times, which can be attributed to the passivation effects of the coated a-SnO2 shell layer. With a wide bandgap (~4.5 eV), the a-SnO2 shell layer can successfully suppress the oxygen-mediated process on the ZnO NRs surface, improving the photoresponse properties. Therefore, with a fast photoresponse speed and a low fabrication temperature, our as-synthesized, a-SnO2-coated ZnO core–shell structure qualifies as a candidate for ZnO-based PDs.


2018 ◽  
Vol 9 ◽  
pp. 2421-2431 ◽  
Author(s):  
Marina Krasovska ◽  
Vjaceslavs Gerbreders ◽  
Irena Mihailova ◽  
Andrejs Ogurcovs ◽  
Eriks Sledevskis ◽  
...  

ZnO nanostructures are promising candidates for use in sensors, especially in electrochemical sensors and biosensors, due to their unique physical and chemical properties, as well as sensitivity and selectivity to several types of contamination, including heavy metal ions. In this work, using the hydrothermal method, nanostructures of ZnO were synthesized in four different morphologies: nanorods, nanoneedles, nanotubes and nanoplates. To determine the peculiarities of adsorption for each morphology, a series of electrochemical measurements were carried out using these nanostructured ZnO coatings on the working electrodes, using aqueous solutions of Pb(NO3)2 and Cd(NO3)2 as analytes with different concentrations. It was found that the sensitivity of the resulting electrochemical sensors depends on the morphology of the ZnO nanostructures: the best results were achieved in the case of porous nanostructures (nanotubes and nanoplates), whereas the lowest sensitivity corresponded to ZnO nanorods with a large diameter (i.e., low surface-to-volume ratio). The efficiency of sedimentation is also related to the electronegativity of adsorbate: it has been shown that all observed ZnO morphologies exhibited significantly higher sensitivity in detecting lead ions compared to cadmium ions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 475
Author(s):  
Hsiang-Chun Chen ◽  
Yang-Ru Lyu ◽  
Alex Fang ◽  
Gang-Juan Lee ◽  
Lakshmanan Karuppasamy ◽  
...  

Tremendous efforts have been made on the development of unique electrochemical capacitors or pseudocapacitors due to the overgrowing electrical energy demand. Here, the authors report a new and simple strategy for fabricating hybrid MnOx-coated ZnO nanorod arrays. First, the vertically aligned ZnO nanorods were prepared by chemical bath deposition (CBD) as a template providing a large surface area for active material deposition. The manganese oxide was subsequently coated onto the surface of the ZnO nanorods to form a hybrid MnOx-coated ZnO nanostructure by anodic deposition in a manganese acetate (MnA)-containing aqueous solution. The hybrid structure of MnOx-coated ZnO nanorod arrays exhibits a large surface area and high conductivity, essential for enhancing the faradaic processes across the interface and improving redox reactions at active MnOx sites. A certain concentration of the deposition solution was selected for the MnOx coating, which was studied as a function of deposition time. Cyclic voltammetry (CV) curves showed that the specific capacitance (SC) of the MnOx-coated ZnO nanostructure was 222 F/g for the deposition times at 10 s when the concentration of MnA solution was 0.25 M. The unique hybrid nanostructures also exhibit excellent cycling stability with >97.5% capacitance retention after 1200 CV cycles. The proposed simple and cost-effective method of fabricating hybrid nanostructures may pave the way for mass production of future intelligent and efficient electrochemical energy storage devices.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Khaldoon N. Abbas ◽  
Noriah Bidin ◽  
Mohammed A. Al-Azawi ◽  
Hayder J. Al-Asedy

A simple hydrothermal method was employed to synthesize 3D hierarchical ZnO nanorods deposited on Si (100) substrate at different growth temperatures (110 and 90oC) within 3 h. The structure, mode and composition of hierarchical ZnO nanorods were investigated by XRD, FESEM and EDX spectroscopy. The polycrystalline ZnO nanostructures products were indexed as hexagonal wurtzite structured, while the morphology was urchin like ZnO nanorods with different aspect ratio of nanorods and stoichiometric. The photoluminescence (PL) properties were studied of as-grown ZnO samples dependent on various growth temperatures. The PL results after UV excitation source were shown a single broad Vis emission peak for both samples with absents of UV emission peak. The emission edge of Vis peak was exhibited blue-shift due to increase temperature growth, and that suggest enhancement in hierarchical ZnO nanorods crystallinity. Oxygen deficiency is evidence on the creation various defects types in hierarchical ZnO nanorods. It is responsible on Vis emission bands. The results demonstrate promising future for the hierarchal ZnO nanostructure which could be applied in optoelectronics and gas sensing. 


MRS Advances ◽  
2016 ◽  
Vol 1 (13) ◽  
pp. 847-853 ◽  
Author(s):  
Mohammed Marie ◽  
Sanghamitra Mandal ◽  
Omar Manasreh

Abstract:Glucose sensor based on ITO/ZnO NRs/GOx/nafion is fabricated and tested under different glucose concentrations. Hydrothermal growth method along with sol-gel technique is used to grow high quality ZnO nanorods that have well-alignment and high density with an acceptable aspect ratio. The as-grown of ZnO nanorods are used to fabricate a working electrode that can be used for glucose detection in blood after a modification process with GOx and nafion membrane. Annealing at 110 °C helped in improves the crystallinity of the seed layer and as a result, a high density and well alignment as-grown ZnO nanorods were obtained. High sensitivity and short response time were obtained from the fabricated device with an acceptable lower limit of detection.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Jiao ◽  
Yang Liu ◽  
Bosi Yin ◽  
Siwen Zhang ◽  
Fengyu Qu ◽  
...  

In this work, ZnO nanorods are obtained through a facile hydrothermal route. The structure and morphology of the resultant products are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The experimental results indicated that the as-synthesized ZnO nanorods have an average diameter of approximate 100 nm. A possible growth mechanism for ZnO nanorods was proposed based on the experimental results and found that Zn powder plays a critical role for the morphology of the products. Room temperature photoluminescence property of ZnO nanorods shows an ultraviolet emission peak at 390 nm.


2014 ◽  
Vol 875-877 ◽  
pp. 554-557
Author(s):  
Bao Li Zhang ◽  
X.P. Zou ◽  
X.M. Lv ◽  
G.Q. Yang ◽  
C.L. Wei ◽  
...  

In this paper we use electrochemical deposition to grow a layer of gray compact film on the steel, characterized the product by X-ray diffraction (XRD) we find the ZnO cone-like rods and hierarchical rod-like nanostructure are all preferentially growing along the C-axis, which is confirmed by the direction of crystal growth in the transmission electron microscope (TEM) image. In the TEM image we find the hierarchical ZnO nanorods have an in situ growth in the high-energy electron beam irradiation, which makes the specific surface area increase and to some extent enhance the absorption of light energy.


2021 ◽  
Vol 37 (3) ◽  
pp. 609-618
Author(s):  
Monira G. Ghoniem ◽  
Sarra A. Talab ◽  
Abueliz K. Modwi ◽  
Kamal K. Taha

Hierarchical porous flower-like ZnO structures containing ZnO nanorods were successfully synthesizedby precipitation process. The structure containing high aspect ratio nanorods was revealed by scanning electron microscopy(SEM). The EDS analysis revealed the ZnO nanostructures formation as confirmed by the Zn and O peaks. The Fourier-transform infrared spectroscopy(FTIR) spectrum indicated the Zn – O bond vibrational frequency. The typical hexagonal wurtzite ZnO nanostructure with 15 nm crystallite size and the characteristic parameters was perceived from the X-ray diffraction(XRD) data. A 10.13 m².g-1 surface area, 10.05 cm3/g pore volume and 18.25 nm pore diameter were estimated using nitrogen adsorption analysis. Bandgap energy of 3.229 eV was calculated from the optical analysis data. Under ultraviolet light irradiation, the prepared nanoparticles has effectively decolorized the methylene blue dye. The reaction obeyed the pseudo-first-order kinetics, and the degradation mechanism was proposed using radicals scavengers to determine the species involved in the photodegradation process such as isopropanol, p-benzoquinone, and dimethyl sulfoxide. The reactive oxygen atom in the mechanism of photodegradation , and the recyclability of ZnO photocatalysts were studied.


Sign in / Sign up

Export Citation Format

Share Document