Tribological, electrochemical and biocompatibility properties of Ti6Al4V alloy produced by selective laser melting method and then processed using gas nitriding, CN or Ti-C:H coating treatments

2018 ◽  
Vol 350 ◽  
pp. 172-187 ◽  
Author(s):  
W.H. Kao ◽  
Y.L. Su ◽  
J.H. Horng ◽  
C.Y. Chang
Author(s):  
Gürkan Kaya ◽  
Tevfik Oğuzhan Ergüder ◽  
İlyas Hacısalihoğlu ◽  
Emre Mandev ◽  
Eyüphan Manay ◽  
...  

2016 ◽  
Vol 704 ◽  
pp. 225-234 ◽  
Author(s):  
Peter Franz ◽  
Aamir Mukhtar ◽  
Warwick Downing ◽  
Graeme Smith ◽  
Ben Jackson

Gas atomized Ti-6Al-4V (Ti64) alloy powder was used to prepare distinct designed geometries with different properties by selective laser melting (SLM). Several heat treatments were investigated to find suitable processing parameters to strengthen (specially to harden) these parts for different applications. The results showed significant differences between tabulated results for heat treated billet Ti64 and SLM produced Ti64 parts, while certain mechanical properties of SLM Ti64 parts could be improved by different heat treatments using different processing parameters. Most heat treatments performed followed the trends of a reduction in tensile strength while improving ductility compared with untreated SLM Ti64 parts.Gas nitriding [GN] (diffusion-based thermo-chemical treatment) has been combined with a selected heat treatment for interstitial hardening. Heat treatment was performed below β-transus temperature using minimum flow of nitrogen gas with a controlled low pressure. The surface of the SLM produced Ti64 parts after gas nitriding showed TiN and Ti2N phases (“compound layer”, XRD analysis) and α (N) – Ti diffusion zones as well as high values of micro-hardness as compared to untreated SLM produced Ti64 parts. The microhardness profiles on cross section of the gas nitrided SLM produced samples gave information about the i) microhardness behaviour of the material, and ii) thickness of the nitrided layer, which was investigated using energy dispersive spectroscopy (EDS) and x-ray elemental analysis. Tensile properties of the gas nitrided Ti64 bars produced by SLM under different conditions were also reported.


2015 ◽  
Vol 828-829 ◽  
pp. 474-481 ◽  
Author(s):  
Ivan Zhirnov ◽  
Ina Yadroitsava ◽  
Igor Yadroitsev

Selective laser melting (SLM) is a modern method for producing objects with complex shape and fine structures in one working cycle from metal powders. Combination of the advanced technology of SLM with unique properties of Ti6Al4V alloy allows creating complex 3D objects for medicine or aerospace industry. Since properties of SLM parts depend on the geometrical characteristics of tracks and their cohesion, optical monitoring is actually used to for control the process. Temperature gradient determines the microstructure and mechanical properties of the SLM part, so studies about temperature fields are primarily important. On-line monitoring during laser scanning of Ti6Al4V alloy and formation of a single track in real-time with high-speed IR camera was studied. Numerical simulation allowed estimation the temperature distribution during processing. Conclusion regarding control system based on the online monitoring of deviations of the signal from IR camera during the SLM process was done.


Vacuum ◽  
2018 ◽  
Vol 150 ◽  
pp. 79-83 ◽  
Author(s):  
Beibei He ◽  
Wenheng Wu ◽  
Liang Zhang ◽  
Lin Lu ◽  
Qiyun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document