Fuel efficiency and emission in China's road transport sector: Induced effect and rebound effect

2016 ◽  
Vol 112 ◽  
pp. 188-197 ◽  
Author(s):  
Jian Chai ◽  
Ying Yang ◽  
Shouyang Wang ◽  
Kin Keung Lai
2018 ◽  
Vol 7 (4.35) ◽  
pp. 823 ◽  
Author(s):  
Mustapa S.I ◽  
Bekhet H.A

The rapid urbanisation and economic growth has led to unprecedented increase in CO2 emissions, which led to a vital global issue due partly to the rise in demand from the transport sector. In the years ahead, the transport services demand is likely to increase further, which lead to intensification in CO2 emissions as well. The transportation sector in Malaysia contributes for about 28% of total CO2 emissions, of which 85% of it goes to road transportation mode. This has led to a great interest in how the CO2 emissions in this sector can effectively be reduced. Using a multiple regression model and datasets from 1990 to 2015, this study aimed to examine factors that influence the CO2 emissions in Malaysia. Key factors of CO2 emissions, i.e., fuel consumption (FC), distance travel (DT), fuel efficiency (FE), and fuel price (FP) were investigated for the road transport sector. The findings demonstrated that the impact of factors on CO2 emissions were varies in each technology vehicles. These findings not only contributes to enhancing the current literature, but also provide insights for policy maker in Malaysia to design policy instruments for road transport sector.


2021 ◽  
Author(s):  
Namita Singh ◽  
Trupti Mishra ◽  
Rangan Banerjee

Abstract India's growing population and economic development lead to an increase in transport emissions. Quantification of emissions at frequent intervals is required to assess the emission levels and impact of control policies implemented. Implemented policies affect the fleet configuration over time. Therefore, in the present paper, an age-wise emission analysis framework was developed for the road transport sector with updated fleet characteristics corresponding to the vehicles' age. The results show that fuel consumption is estimated to be 92 (87–95) Mt, and total CO2, CO, PM, and NOx vehicle emissions are estimated to be 274 (265–292) Tg, 4463 (3253–6676) Gg, 164 (119–250) Gg, and 2378 (2191–3045) Gg, respectively for the reference year 2020. The study contributes by developing an inventory for the fleet of 2020 used as a benchmark to compare past emissions inventories, evaluate control policies, estimate state-wise vehicle emissions inventories, and identify significant emitters in the fleet. Sensitivity analysis indicates the considerable variation in total emissions resulting from different age-mix of vehicles. Among the investigated policies, advancement in emission norms followed by fuel efficiency improvement in vehicles led to a substantial reduction in gaseous pollutants. Based on the inventory results, suitable policies are suggested for India's future fleet, and the need for country-level fleet characteristics data is recommended.


Author(s):  
Namita Singh ◽  
Trupti Mishra ◽  
Rangan Banerjee

In India, the road transport sector contributed around 90% of total transport CO2 emissions in 2018. Air pollution from the road transport sector has detrimental effects on both air quality and human health. The policies implemented have a long-term impact on the amount of vehicle emissions and characteristics of fleet vehicles. The present study analyzes emissions from India’s road transport sector using the bottom-up activity approach model. Future vehicle stocks in India are projected up to 2030 using a hybrid growth model approach. Vehicle emissions of CO2, CO, particulate matter (PM), and NOx are analyzed for India's reference (2020) and projected years fleet (2030). The emissions from the projected fleet are subjected to different mitigation scenarios such as retrofit and scrappage policies to estimate the emission reduction potentials of these scenarios from the future fleet of India. The analysis of the study indicates that the retrofit policies are more effective in reducing vehicle emissions than the scrappage policies. Retrofit policies such as the advancement in emission norms (shift to Bharat Stage (BS)-VI from BS-IV), the increased share of compressed natural gas (CNG) vehicles, and fuel efficiency (FE) improvements have reduced vehicle emissions significantly compared to the scrappage of old vehicles from the fleet. The low impact of scrappage policies is attributed to the projected fleet’s lower share of old vehicles (10–15%). While retrofit policies have a significant impact as they largely affect 85% to 90% of young vehicles (less than ten years of age) in 2030. A combination of both policies is suggested to control future fleet emissions. The study also conducts sensitivity analysis, which indicates a significant influence of the emission factors in the vehicle emission analysis and GDP growth rates in the vehicle fleet projection.


2018 ◽  
Vol 58 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Péter Bucsky

Abstract The freight transport sector is a low profit and high competition business and therefore has less ability to invest in research and development in the field of autonomous vehicles (AV) than the private car industry. There are already different levels of automation technologies in the transport industry, but most of these are serving niche demands and answers have yet to be found about whether it would be worthwhile to industrialise these technologies. New innovations from different fields are constantly changing the freight traffic industry but these are less disruptive than on other markets. The aim of this article is to show the current state of development of freight traffic with regards to AVs and analyse which future directions of development might be viable. The level of automation is very different in the case of different transport modes and most probably the technology will favour road transport over other, less environmentally harmful traffic modes.


2021 ◽  
Vol 13 (4) ◽  
pp. 2225
Author(s):  
Ralf Peters ◽  
Janos Lucian Breuer ◽  
Maximilian Decker ◽  
Thomas Grube ◽  
Martin Robinius ◽  
...  

Achieving the CO2 reduction targets for 2050 requires extensive measures being undertaken in all sectors. In contrast to energy generation, the transport sector has not yet been able to achieve a substantive reduction in CO2 emissions. Measures for the ever more pressing reduction in CO2 emissions from transportation include the increased use of electric vehicles powered by batteries or fuel cells. The use of fuel cells requires the production of hydrogen and the establishment of a corresponding hydrogen production system and associated infrastructure. Synthetic fuels made using carbon dioxide and sustainably-produced hydrogen can be used in the existing infrastructure and will reach the extant vehicle fleet in the medium term. All three options require a major expansion of the generation capacities for renewable electricity. Moreover, various options for road freight transport with light duty vehicles (LDVs) and heavy duty vehicles (HDVs) are analyzed and compared. In addition to efficiency throughout the entire value chain, well-to-wheel efficiency and also other aspects play an important role in this comparison. These include: (a) the possibility of large-scale energy storage in the sense of so-called ‘sector coupling’, which is offered only by hydrogen and synthetic energy sources; (b) the use of the existing fueling station infrastructure and the applicability of the new technology on the existing fleet; (c) fulfilling the power and range requirements of the long-distance road transport.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Felipe Andrade Torres ◽  
Omid Doustdar ◽  
Jose Martin Herreros ◽  
Runzhao Li ◽  
Robert Poku ◽  
...  

The worldwide consumption of fossil hydrocarbons in the road transport sector in 2020 corresponded to roughly half of the overall consumption. However, biofuels have been discreetly contributing to mitigate gaseous emissions and participating in sustainable development, and thus leading to the extending of the commercial utilization of internal combustion engines. In this scenario, the present work aims at exploring the effects of alternative fuels containing a blend of 15% ethanol and 35% biodiesel with a 50% fossil diesel (E15D50B35) or 50% Fischer–Tropsch (F-T) diesel (E15FTD50B35) on the engine combustion, exhaust emissions (CO, HC, and NOx), particulate emissions characteristics as well as the performance of an aftertreatment system of a common rail diesel engine. It was found that one of the blends (E15FTD50B35) showed more than 30% reduction in PM concentration number, more than 25% reduction in mean particle size, and more than 85% reduction in total PM mass with respect to conventional diesel fuel. Additionally, it was found that the E15FTD50B35 blend reduces gaseous emissions of total hydrocarbons (THC) by more than 25% and NO by 3.8%. The oxidation catalyst was effective in carbonaceous emissions reduction, despite the catalyst light-off being slightly delayed in comparison to diesel fuel blends.


Author(s):  
Sebastjan Škerlič ◽  
Vanja Erčulj

The goal of the research is to determine how compensation affects the safety behavior of truck drivers and consequently the frequency of traffic accidents. For this purpose, a survey was conducted on a sample of 220 truck drivers in international road transport in the EU, where the results of the Structural Equation Model (SEM) show that in the current state of the transport sector, financial and non-financial incentives have a positive impact on the work and safety behavior of drivers. Financial incentives also have an impact on drivers’ increased perception of their driving ability, while moving violations continue to have a major impact on the number of accidents. The proposed improvements enable decision-makers at the highest level to adopt legal solutions to help manage the issues that have been affecting the industry from a work, social and safety point of view for the past several years. The results of the research therefore represent an important guideline for improvements to the legislature as well as in the systematization of truck driver compensation within companies.


Sign in / Sign up

Export Citation Format

Share Document