Correlation between the dielectric constant and X-ray diffraction pattern of Si-O-C thin films with hydrogen bonds

2004 ◽  
Vol 468 (1-2) ◽  
pp. 316-321 ◽  
Author(s):  
Teresa Oh ◽  
Kyoung Suk Oh ◽  
Kwang-Man Lee ◽  
Chi Kyu Choi
2009 ◽  
Vol 16 (05) ◽  
pp. 723-729 ◽  
Author(s):  
D. NITHYAPRAKASH ◽  
B. PUNITHAVENI ◽  
J. CHANDRASEKARAN

Thin films of In2Se3 were prepared by thermal evaporation. X-ray diffraction indicated that the as-grown films were amorphous in nature and became polycrystalline γ-In2Se3 films after annealing. The ac conductivity and dielectric properties of In2Se3 films have been investigated in the frequency range 100 Hz–100 kHz. The ac conductivity σ ac is found to be proportional to ωn where n < 1. The temperature dependence of both ac conductivity and the parameter n is reasonably well interpreted by the correlated barrier hopping (CBH) model. The values of dielectric constant ε and loss tangent tan δ were found to increase with frequency and temperature. The ac conductivity of the films was found to be hopping mechanism. In I–V characteristic for different field and temperature were studied and it has been found that the conduction process is Poole–Frenkel type.


2020 ◽  
Vol 27 (08) ◽  
pp. 1950196
Author(s):  
SHUFENG LI ◽  
LI WANG ◽  
XUEQIONG SU ◽  
YONG PANG ◽  
DONGWEN GAO ◽  
...  

Amorphous and crystalline Zn[Formula: see text]CoxS ([Formula: see text], 0.3, 0.5) thin films were grown on sapphire (Al2O3) substrates by pulsed laser deposition at substrate temperature of 25∘C and 800∘C, respectively. The X-ray diffraction results show that the crystalline film has a cubic zinc blende structure and the crystalline quality decreased with increasing Co-doping concentration. The X-ray diffraction and X-ray photoelectron spectroscopy spectra reveal that the samples reached an overdoping state at Co-doping concentration of [Formula: see text]. The absorbance of films increases and the absorption edge shifts to longer wave length direction with increasing Co-doping concentration. The redshift of the band gap energy depends on the Co composition associating with the Urbach energy. Furthermore, the refractive index and dielectric constant increase with increasing Co-doping concentration. The dispersion parameters, such as dispersion energy ([Formula: see text]), oscillator energy ([Formula: see text]), static refractive index ([Formula: see text]), static dielectric constant ([Formula: see text]), interband transition strength moments ([Formula: see text] and [Formula: see text]), oscillator strength [Formula: see text] and oscillator wavelength [Formula: see text], have been analyzed by Wemple–DiDomenico single oscillator model. All these parameters were found to be dependent upon the Co-doping concentration in the Zn[Formula: see text]CoxS thin films.


2016 ◽  
Vol 13 (10) ◽  
pp. 7234-7237
Author(s):  
Botong Wang ◽  
Zebo Xu ◽  
Zhiqiang Wang

Silica/polyurea composite was prepared after surface modification of silica nanoparticles. Silica/polyurea composite was characterized by Fourier-transform infrared spectroscopy, ultraviolet spectroscopy, X-ray diffraction and transmission electron microscopy. The results indicate that the helical polyurea has been successfully grafted onto the surfaces of the modified silica. Silica/polyurea composite exhibits clearly core–shell structure. The ultraviolet absorption and crystallizability of silica/polyurea are changed due to the shell of helical polyurea, which possesses regular singlehanded conformation and interchain hydrogen bonds. The dielectric constant of silica/polyurea was also investigated. The result indicates that the interfacial interactions between organic shell and inorganic core increase the dielectric constant value being increased to 6.42 for silica/polyurea. The interchain hydrogen bonds of helical polyurea could also be the reason for the increasing of dielectric constant.


2014 ◽  
Vol 1670 ◽  
Author(s):  
Enue Barrios-Salgado ◽  
José Campos ◽  
M. T. S. Nair ◽  
P. K. Nair

AbstractChemically deposited thin film stack of SnSe-ZnSe-Cu2-xSe was heated in nitrogen with Se vapor at 350-400 oC to produce Cu2ZnSnSe4 (CZTSe) thin films. For this, a thin film of SnSe with 180 nm thickness was deposited at 26 °C from a chemical bath containing tin(II) chloride, triethanolamine, sodium hydroxide, sodium selenosulfate, and a small quantity of polyvinylpyrrolidone. Thin films of ZnSe and Cu2-xSe were subsequently deposited on this SnSe film, also from chemical bath. The CZTSe thin film produced this way shows X-ray diffraction pattern matching that of Cu2ZnSnSe4 (kesterite/stannite) and have a Zn-rich composition. The film has an optical band gap of 0.9-1.0 eV and p-type electrical conductivity, 0.2-0.06 Ω-1 cm-1.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
C. M. Dudhe ◽  
S. B. Nagdeote

The properties of CaNb2O6 nanoparticles synthesized by coprecipitation method under controlled reaction rate and extended calcination time were studied. Analysis of the X-ray diffraction pattern shows single orthorhombic phase of the material with lattice parameters: a=15.0147 Å, b=5.74148 Å, and c=5.30296 Å. The morphology and size of particles was found to be improved due to the controlled reaction rate and extended calcination time. The average sizes of the particles were estimated as 40 nm and 90 nm for sintering temperatures 650°C and 800°C, respectively. The material was found to possess dielectric constant which is inversely proportional to the frequency. Surprisingly, the material shows ferroelectric behavior, the possible origin of which is discussed here.


1996 ◽  
Vol 80 (1) ◽  
pp. 89-96 ◽  
Author(s):  
J. L. Jordan‐Sweet ◽  
P. M. Mooney ◽  
M. A. Lutz ◽  
R. M. Feenstra ◽  
J. O. Chu ◽  
...  

2004 ◽  
Vol 11 (06) ◽  
pp. 503-507 ◽  
Author(s):  
CHANGHONG YANG ◽  
ZHUO WANG ◽  
DONGYING PAN ◽  
JIANRU HAN ◽  
QINGXIA LI ◽  
...  

Neodymium-doped Bi 4 Ti 3 O 12 ( Bi 3.15 Nd 0.85 Ti 3 O 12) thin films have been synthesized by metalorganic solution decomposition and deposited on SiO 2/ p - Si (111) substrate by spin coating. The structural characteristic and crystallization of the films were examined by X-ray diffraction and atomic force microscope. The insulating property, dielectric constant and dissipation loss were found to be dependent on the annealing temperature. Nonhysteretic C – V curves at various frequencies were also collected. The films in the ON and OFF states were relatively stable.


1999 ◽  
Vol 592 ◽  
Author(s):  
Zhuo Wang ◽  
J. Huang ◽  
S.W. Wang ◽  
X.X. Hong ◽  
Y. Hou ◽  
...  

ABSTRACTBismuth titanate thin films have been prepared on silicon by metalorganic decompositionMOD) technique with bismuth nitrate and titanium butoxide as source materials. The growth procedure of the Bi2Ti2O7 thin films is discussed in this paper. The surface morphology of the Bi2Ti2O7 film was investigated by using Electric Force Microscope (EFM), and the crystallization of the films was studied by x-ray diffraction (XRD). Bismuth titanate thin film prepared on (100) silicon substrate showed strong (111) orientation. Its dielectric properties and the current-voltage (I-V) characteristics were measured. The dielectric constant of the Bi2Ti2O7 thin films vs. frequency, in the temperature range of 100-800 °C, were studied. The dielectric constant and the dielectric loss for Bi2Ti2O7 are 118 and 0.07 respectively at 100KHz. For the Bi2Ti2O7 films with 0.4µm in thickness annealed at 580 °C for 40 minutes, their leakage current density is 4.06×10−7 A/cm2 at an applied voltage of 15V.The ferroelectric phase transition has been observed distinctly and the Curie temperature was determined for the Bi2Ti2O7 ceramic films. Capacitance vs. temperature was measured from 27-800 at 1KHz, 100KHz, 100KHz and 1MHz.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document