Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

2012 ◽  
Vol 520 (20) ◽  
pp. 6368-6374 ◽  
Author(s):  
L. De Los Santos Valladares ◽  
D. Hurtado Salinas ◽  
A. Bustamante Dominguez ◽  
D. Acosta Najarro ◽  
S.I. Khondaker ◽  
...  
2009 ◽  
Vol 66 ◽  
pp. 131-134
Author(s):  
X. Cao ◽  
Xiao Min Li ◽  
Wei Dong Yu ◽  
Rui Yang ◽  
Xin Jun Liu

Polycrystalline NiO thin films were fabricated on Pt (111)/Ti/SiO2/Si substrates by thermal oxidation of the evaporated Ni films. Pt/NiO/Pt structures were prepared, and they showed reversible resistance switching behaviors. When the compliance set current was varied from 5 mA to 40 mA, the on-state currents increased, while the on-state resistances decreased. It is probably attributed to higher current compliance resulted in the formation of stronger and less resistive filaments, which in turn need more energy and power for their rupture. The resistive switching in NiO thin films is closely related to the formation and rupture of conducting filaments.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1605 ◽  
Author(s):  
Marietta Seifert

This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca 3 TaGa 3 Si 2 O 14 (CTGS) and La 3 Ga 5 SiO 14 (LGS) substrates. RuAl thin films with AlN or SiO 2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In some films, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO 2 barrier layer and up to 800 °C in air using a SiO 2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO 2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.


2001 ◽  
Vol 699 ◽  
Author(s):  
Ilan Golecki ◽  
Margaret Eagan

AbstractRhodium and iridium are refractory metals which possess intrinsically high electrical conductivity, and their chemical inertness enables their use at relatively high temperatures in microelectronics. However, due to the high Young's modulus of these materials, a residual tensile stress of hundreds of MPa is measured in evaporated thin films. New data is presented, demonstrating control over both the magnitude and the sign of the residual stress in such refractory thin films formed by means of ion-beam-enhanced physical vapor deposition on oxidized Si substrates. The electrical resistivity and stress are determined by controlling the substrate temperature, deposition rate and ion beam parameters. Thicker films are achieved in this manner, including films with near-zero residual stress.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
J. L. Batstone ◽  
D.A. Smith

Recrystallization of amorphous NiSi2 involves nucleation and growth processes which can be studied dynamically in the electron microscope. Previous studies have shown thatCoSi2 recrystallises by nucleating spherical caps which then grow with a constant radial velocity. Coalescence results in the formation of hyperbolic grain boundaries. Nucleation of the isostructural NiSi2 results in small, approximately round grains with very rough amorphous/crystal interfaces. In this paper we show that the morphology of the rccrystallizcd film is dramatically affected by variations in the stoichiometry of the amorphous film.Thin films of NiSi2 were prepared by c-bcam deposition of Ni and Si onto Si3N4, windows supported by Si substrates at room temperature. The base pressure prior to deposition was 6 × 107 torr. In order to investigate the effect of stoichiomctry on the recrystallization process, the Ni/Si ratio was varied in the range NiSi1.8-2.4. The composition of the amorphous films was determined by Rutherford Backscattering.


2020 ◽  
Vol 140 (4) ◽  
pp. 186-192
Author(s):  
Shumpei Ogawa ◽  
Tatsuya Kuroda ◽  
Yasuyuki Katou ◽  
Hironori Haga ◽  
Hiroki Ishizaki

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


Sign in / Sign up

Export Citation Format

Share Document