Effects of oxygen flow rate on microstructure and properties of indium molybdenum oxide films by ion beam-assisted deposition

Vacuum ◽  
2008 ◽  
Vol 82 (5) ◽  
pp. 441-447 ◽  
Author(s):  
C.C. Kuo ◽  
C.C. Liu ◽  
C.C. Lin ◽  
Y.Y. Liou ◽  
Y.F. Lan ◽  
...  
2021 ◽  
Author(s):  
Pakpoom Chansri ◽  
Pattarapon Pooyodying ◽  
Youl Moon Sung

Abstract A flexible transparent is an important technology to improve flexible electronic and flexible display devices. Actually, the deposition process of films coated on a flexible substrate will no more than 200 °C or room temperature. In order to achieve high transmission and lower resistivity, this paper reported the thin films of ITiO deposited by ion beam-assisted electron beam under the condition of different oxygen flow rates at room temperature. The electrical, optical, and morphological properties of ITiO films were investigated under the condition of different oxygen flow rates. At the 30 sccm oxygen flow rate, the surface roughness was 5.4 nm, high transmittance and optical bandgap of ITiO films were 89.2% at 470 nm wavelengths and 3.28 eV, respectively. The lowest resistivity of film was 2.1 × 10-4 Ω-cm at 30 sccm oxygen flow rate. Furthermore, the carrier concentration and hall mobility were experimentally investigated, which presented by 42.8 cm2/Vsec and 9.23 × 1020 cm-3. The use ITiO film coated on a flexible substrate with ion beam-assisted electron beam evaporation at room temperature can improve the lower resistivity and high transmission of the flexible device. It was also demonstrated that ITiO film with ion beam-assisted deposition technique is suitable for flexible electronic and flexible display devices.


2021 ◽  
Vol 39 ◽  
pp. 43-53
Author(s):  
Divyeshkumar P. Dave ◽  
Akshay M. Patel ◽  
Kamlesh V. Chauhan ◽  
Sushant K. Rawal

The influence of oxygen flow rate is examined on structural, optical and tribological properties of molybdenum oxide films deposited by reactive magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscope (SEM), and contact angle measurement system. The optical properties of the films were measured by UV-Vis-NIR spectrophotometer and transmittance of ∼73% in the visible region of the spectrum was achieved. The band gap increases with increases in oxygen gas flow rate. AFM figure illustrates that the roughness of surface increases as oxygen flow rate increases. As oxygen increases wear rate and COF decreases while at the 18 sccm the lowest wear rate found.


2022 ◽  
Vol 40 (1) ◽  
pp. 013405
Author(s):  
Nilton Francelosi A. Neto ◽  
Cristiane Stegemann ◽  
Lucas J. Affonço ◽  
Douglas M. G. Leite ◽  
José H. D. da Silva

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 517
Author(s):  
Pengfei Kong ◽  
Yunti Pu ◽  
Ping Ma ◽  
Jiliang Zhu

Scandium oxide (Sc2O3) thin films with different numbers of oxygen defects were prepared by ion-beam sputtering under different oxygen flow rates. The results showed that the oxygen defects heavily affected crystal phases, optical properties, laser-induced damage threshold (LIDT) and surface quality of Sc2O3 films. The thin film under 0 standard-state cubic centimeter per minute (sccm) oxygen flow rate had the largest number of oxygen defects, which resulted in the lowest transmittance, LIDT and the worst surface quality. In addition, the refractive index of 0 sccm Sc2O3 film could not be measured in the same way. When the oxygen flow rate was 15 sccm, the Sc2O3 film possessed the best transmittance, refractive index, LIDT and surface roughness due to the lowest number of oxygen defects. This work elucidated the relationship between oxygen defects and properties of Sc2O3 films. Controlling oxygen flow rate was an important step of limiting the number of oxygen defects, which is of great significance for industrial production.


Author(s):  
Silvia L. Fernandes ◽  
Lucas J. Affonço ◽  
Roberto A. R. Junior ◽  
José H. D. da Silva ◽  
Elson Longo ◽  
...  

2018 ◽  
Vol 482 ◽  
pp. 203-207 ◽  
Author(s):  
Lishuan Wang ◽  
Yugang Jiang ◽  
Chenghui Jiang ◽  
Huasong Liu ◽  
Yiqin Ji ◽  
...  

2014 ◽  
Vol 1699 ◽  
Author(s):  
Wilhelmus J. Geerts ◽  
Nelson A. Simpson ◽  
Alan D. Woodall ◽  
Maclyn Stuart Compton

ABSTRACTITO samples were sputtered at room temperature by ion assisted dual ion beam sputtering using atomic or molecular oxygen. The electrical properties appear to depend on the oxygen flow rate during deposition and the resistivity decreases for samples sputtered at a higher oxygen flow rate (1-5 sccm). The resistivity is lowest at an oxygen flow rate of 4 sccm. The average absorption in the visible part of the spectrum also decreases as a function of the oxygen flow rate and is lower for samples sputtered with atomic oxygen. The figure of merit, i.e. the ratio of the conductivity versus the average absorption in the visible range, increases for higher oxygen flow rates and is typically 20-60% higher for samples sputtered using an atomic oxygen assist beam.


Sign in / Sign up

Export Citation Format

Share Document