Investigation on the influence of SiC particle parameters on the machinability of SiCp/Al composite

Vacuum ◽  
2021 ◽  
pp. 110340
Author(s):  
Ping Zhang ◽  
Xiujie Yue ◽  
Qiang Zhang ◽  
Chengguo Zong ◽  
Wei Lu ◽  
...  
2017 ◽  
Vol 727 ◽  
pp. 565-570
Author(s):  
Yan Yan Shi ◽  
Xiao Gang Wang ◽  
Jun Tao Liu

The fabrication and thermal physical properties contain thermal conductivity (TC) and coefficient of thermal expansion (CTE) using 40%、50%、60% vol% β-SiC particle reinforced Al composite for electronic packaging respectively have been analyzed. The composites were produced by ball milling and pressing method. The composite which fabricated by tri-sized β-SiC particle with a weight ratio of 17:7:1,vol% of 50% and 60%.The dense and morphology were investigated. The relationship between volume fraction of β-SiC particle and thermal physical properties was discussed. Changed the volume fraction of β-SiC particle will led to a decreasing or increasing of TC and CTE. It found that values of TC and CTE were achieved their maximum balance when using tri-sized β-SiC particle of 160μm ,125μm as well as 38μm with a weight ratio of 17:7:1 and 50%vol of β-SiC particle reinforcing.


2007 ◽  
Vol 546-549 ◽  
pp. 661-666 ◽  
Author(s):  
Chun Lin He ◽  
Qing Kui Cai

The effects of current densities on the morphology and corrosion resistance of anodized coating formed on a SiCp/2024 Al metal matrix composite (MMC) in sulfuric acid solution were investigated by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and polarization curve. The results showed that the surface of the coating was not flat, and cracks existed when the current density increased to 20mA/cm2. The SiC particles could be oxidized during anodizing of the MMC. And the SiC particle anodized at a significantly reduced rate compared with the adjacent Al matrix. This gave rise to alumina film encroachment beneath the particle and occlusion of the partly anodized particle in the coating. As a consequence, the oxide/substrate interface became locally scalloped, and the anodized coating was non-uniform in thickness. Further, oxidation of SiC appeared to be associated with gas-filled cavities in the coating material. The size of cavities above the SiC particles increased obviously and the surface cracks developed when the current density increased. This shows that the anodized coating formed at higher current density has a structural feature with lower corrosion resistance. The polarization results indicated that the corrosion resistance of the coating decreases when the current density increases.


Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Bin Wang ◽  
Shengguan Qu ◽  
Xiaoqiang Li

The in-house developed bismuthate glass and the SiCp/Al composites with different volume fractions of SiC particles (namely, 60 vol.%, 65 vol.%, 70 vol.%, and 75 vol.%) were jointed by vacuum hot-pressing process. The novel material can be used for the space mirror. The SiCp is an abbreviation for SiC particle. Firstly, the SiCp/Al composites with different vol.% of SiC particle were manufactured by using infiltration process. In order to obtain a stable bonding interface, the preoxide layers were fabricated on the surfaces of these composites for reacting with the bismuthate glass. The coefficient of thermal expansion (CTE) was carried out for characterizing the difference between the composites and bismuthate glass. The sealing quality of the composites and the bismuthate glass was quantified by using shear strength testing. The optical microstructures showed the particles were uniformly distributed in the Al matrix. The SEM image shows that a smooth oxidation layer was generated on the SiCp/Al composite. The CTE testing result indicated that the higher the vol.% of the particles in the composite, the lower the CTE value. The shear strength testing result disclosed that SiCp/Al composite with relatively low CTE value was favorable to obtain a bonding interface with high strength.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


Author(s):  
Yang Xi-Chen ◽  
Li Hui-Shan ◽  
Wang Yun-Shan ◽  
Ma Bing ◽  
Yi Ying-Hui

2008 ◽  
Author(s):  
M. Kawalec ◽  
D. Przestacki ◽  
K. Bartkowiak ◽  
M. Jankowiak

1990 ◽  
Vol 55 (12) ◽  
pp. 2889-2897
Author(s):  
Jaroslav Holoubek

Recent theoretical work has shown that the complete set of polarized elastic light-scattering studies should yield information about scatterer structure that has so far hardly been utilized. We present here calculations of angular dependences of light-scattering matrix elements for spheres near the Rayleigh and Rayleigh-Gans-Debye limits. The significance of single matrix elements is documented on examples that show how different matrix elements respond to changes in particle parameters. It appears that in the small-particle limit (Rg/λ < 0.1) we do not loose much information by ignoring "large particle" observables.


1992 ◽  
Vol 25 (8) ◽  
pp. 115-122 ◽  
Author(s):  
G. S. Perrusquía

An experimental study of the transport of sediment in a part-full pipe was carried out in a concrete pipe. The experiments were confined to bedload transport. The purpose of this study was to analyze the flow conditions that characterize the stream traction in pipe channels and their relationship to flow resistance and sediment transport rate. Three procedures used in this kind of experimental study were tested and found valid: 1) the vertical velocity distribution near the sediment bed can be described by the velocity-defect law, 2) the side wall elimination procedure can be used to compute the hydraulic radius of the sediment bed, and 3) the critical shear stress of the sediment particles can be obtained by using Shields' diagram. A relationship to estimate bedload transport, based on dimensional analysis, was proposed. This was expressed in terms of both flow and particle parameters as well as geometric factors. Further experimental work is recommended before this relationship can be fully incorporated in a simulation model for the analysis of storm sewers.


Sign in / Sign up

Export Citation Format

Share Document