Vertical transmission of Salmonella Enteritidis with heterogeneous antimicrobial resistance from breeding chickens to commercial chickens in China

2020 ◽  
Vol 240 ◽  
pp. 108538
Author(s):  
Chang-Wei Lei ◽  
Yu Zhang ◽  
Zhuang-Zhuang Kang ◽  
Ling-Han Kong ◽  
Yi-Zhi Tang ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 785
Author(s):  
Abubakar Siddique ◽  
Sara Azim ◽  
Amjad Ali ◽  
Saadia Andleeb ◽  
Aitezaz Ahsan ◽  
...  

Salmonellosis caused by non-typhoidal Salmonellaenterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.


Author(s):  
Jermaine Khumalo ◽  
Bamusi Saidi ◽  
Joshua Mbanga

With the extensive use of antibiotics in livestock production, surveillance revealed an increase in Salmonella resistance to the commonly used antimicrobials in veterinary and public health. This serious threat to health care is further exacerbated by the limited epidemiological information about the common zoonotic agent, Salmonella enteritidis, required to determine antibiotic therapy. The aim was to characterise the antimicrobial resistance patterns of S. enteritidis isolates across different timelines (1972–2005) with accompanying genetic changes being investigated. Thirty-seven stored S. enteritidis isolates were collected from the Central Veterinary Laboratory, Harare, with antimicrobial susceptibility determined against eight antibiotics. Plasmids were isolated to analyse any genetic variation. An overall significant increase in resistance (p < 0.05) to nalidixic acid (0% – 10%), ampicillin (14.3% – 50%), tetracycline (14.3% – 30%) and erythromycin (71.4% – 100%) was observed across the timeline. However, the highest rates of susceptibility were maintained for gentamicin, sulphamethoxazole-trimethoprim, kanamycin and chloramphenicol. We report an increase in multidrug resistance (MDR) of 14.2% – 50% with an increase in resistotypes and plasmid profiles across the timeline. Eleven plasmid profiles were obtained in the 37 isolates studied with a minority of isolates (21.6%, 8/37) harbouring a 54 kb plasmid, commonly serovar-specific. A concerning increase in antimicrobial resistance to commonly administered drugs was observed across the timeline. The surge in MDR is of great concern and implies the need for consistent antimicrobial stewardship. No correlation was observed between the plasmid and antibiotic profiles.


2007 ◽  
Vol 1 (03) ◽  
pp. 284-288 ◽  
Author(s):  
Amy Gassama Sow ◽  
Abdoul Aziz Wane ◽  
Mamadou Hadi Diallo ◽  
Cheikh Saad-Bouh Boye ◽  
Awa Aïdara-Kane

Background: It is well established that Salmonella enterica is a major cause of food-borne disease worldwide. In Africa, according to the Who Global Salm-Surv country data bank from 2000 to 2002 Salmonella enterica serovar Enteritidis was the most common serotype involved in human salmonellosis. In Dakar this serotype of Salmonella has been reported as a frequent and an increasing cause of human infection. Methodology: The genetic determinants of the antimicrobial resistance of 25 selected multiresistant strains of Salmonella enterica serovar Enteritidis referred to the National Reference Center for Enterobacteria (NRCE) in Dakar were investigated using molecular techniques. Results: All strains carried blaTEM 1 genes. Five harboured three types of class 1 integrons with gene cassettes dfrA15, dfrA1-aadA1 and dfrA7. Multiresistance was due to a 23 Kb conjugative plasmid. DNA fingerprinting by macrorestriction of genomic DNA revealed a single related group suggesting that strains might be clonal. Conclusions: The spread of resistance genes through plasmid transfer plays an important role in the dissemination of antibiotic resistance in enteric pathogens such as Salmonella Enteritidis; the risk of transmissibility of antibiotic resistance between different bacterial strains highlights the urgent need to develop strategies to limit the spread of antimicrobial resistance among bacterial enteropathogens.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Zunita Zakaria ◽  
Latiffah Hassan ◽  
Zawiyah Sharif ◽  
Norazah Ahmad ◽  
Rohaya Mohd Ali ◽  
...  

This study was undertaken to determine the virulence, antimicrobial resistance and molecular subtypes of Salmonella in the Central Region of Peninsular Malaysia. A total of 45 Salmonella Enteritidis were detected from live chicken (cloacal swab), and chicken products (fresh and ready-to-eat meat) samples upon cultural isolation and serotyping. Similarly, an antimicrobial susceptibility test based on the Kirby Bauer disk diffusion method as well as antimicrobial resistance AMR genes, virulence determinants and multilocus sequence typing (MLST) typing were conducted after the Whole Genome Sequencing and analysis of the isolates. The results indicate that sequence types ST1925 (63.7%), and ST11 (26.5%) were the predominant out of the seven sequence types identified (ST292, ST329, ST365, ST423 and ST2132). The phenotypic antimicrobial profile corresponds to the genotypic characterization in that the majority of the isolates that exhibited tetracycline, gentamycin and aminoglycoside resistance; they also possessed the tetC and blaTEM β-Lactam resistance genes. However, isolates from cloacal swabs showed the highest number of resistance genes compared to the chicken products (fresh and ready-to-eat meat) samples. Furthermore, most of the virulence genes were found to cluster in the Salmonella pathogenicity island (SPI). In this study, all the isolates were found to possess SPI-1, which codes for the type III secretion system, which functions as actin-binding proteins (SptP and SopE). The virulence plasmid (VP) genes (spvB, spvC) were present in all genotypes except ST365. The findings of this study, particularly with regard to the molecular subtypes and AMR profiles of the Salmonella Enteritidis serotype shows multidrug-resistance features as well as genetic characteristics indicative of high pathogenicity.


2016 ◽  
Vol 79 (11) ◽  
pp. 1884-1890 ◽  
Author(s):  
SANG-IK OH ◽  
JONG WAN KIM ◽  
MYEONGJU CHAE ◽  
JI-A JUNG ◽  
BYUNGJAE SO ◽  
...  

ABSTRACT This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:− (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes blaTEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.


Sign in / Sign up

Export Citation Format

Share Document