scholarly journals Experimental study of behavior of endocrine-disrupting chemicals in leachate treatment process and evaluation of removal efficiency

2009 ◽  
Vol 29 (6) ◽  
pp. 1852-1859 ◽  
Author(s):  
Hiroshi Asakura ◽  
Toshihiko Matsuto
2012 ◽  
Vol 11 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Hong-Chang Zhang ◽  
Ting Xu ◽  
Xia-lin Hu ◽  
Wei-hai Pang ◽  
Da-Qiang Yin

The distributions and effects of 31 selected endocrine disrupting chemicals (EDCs) in two drinking water factories were analyzed in this study. The distributions of EDCs were analyzed by solid phase extraction (SPE) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS). The concentrations of these EDCs were from lower than the LOD (limit of detection) to 23.13 ng L − 1 in the samples; most of them were lower than 1 ng L − 1. The highest concentration (23.13 ± 1.45 ng L − 1) was detected in the raw water. Twenty-six chemicals were found in the raw water and only five in the finished water of drinking water factory A, while 25 chemicals were detected in the raw water and two in the finished water of drinking water factory B. The results indicate that most of the EDCs can be removed by the water treatment process. In the advanced treatment process, the ozonation processes have the highest removal efficiency. Separate analyses in May and September show similar results. Apart from the chemical analysis, yeast strain transformed when the estrogen receptor α (ERα) gene was employed to test the estrogenic effects of the water samples. Due to the low concentrations of these EDCs, no significant estrogenic effects were found from the samples.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1349 ◽  
Author(s):  
Tawfiq J. H. Banch ◽  
Marlia M. Hanafiah ◽  
Abbas F. M. Alkarkhi ◽  
Salem S. Abu Amr

In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses. The treatment efficiency was evaluated based on the removal of four selected (responses) parameters; namely, chemical oxygen demand (COD), color, NH3–N and total suspended solids (TSS). The optimum removal efficiency for COD, TSS, NH3–N and color was obtained using a tannin dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead (Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency for COD, TSS, NH3–N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+ were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results demonstrate that tannin-based natural coagulant could effectively remove organic compounds and heavy metals from stabilized landfill leachate.


2006 ◽  
Vol 35 (3) ◽  
pp. 254-255 ◽  
Author(s):  
Hirohito Tsue ◽  
Tatsuya Takimoto ◽  
Chieko Kikuchi ◽  
Haruna Yanase ◽  
Koichi Ishibashi ◽  
...  

2016 ◽  
Vol 74 (4) ◽  
pp. 904-913 ◽  
Author(s):  
Injeong Kim ◽  
Hyo-Dong Kim ◽  
Tae-Yong Jeong ◽  
Sang Don Kim

This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography–mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms.


2018 ◽  
Vol 8 (8) ◽  
pp. 1240 ◽  
Author(s):  
Xiurong Si ◽  
Zunfang Hu ◽  
Shiyuan Huang

Endocrine-disrupting chemicals (EDCs) in the secondary effluent discharged from wastewater treatment plants are of great concern when water reuse is intended. The combined process of ozone (O3) and ultrafiltration (UF) is a promising EDC removal method. The removal efficiency of five EDCs using O3, UF and their combination were investigated and compared. The five EDCs were estrone, 17β-estradiol, estriol, 17α-ethynyl estradiol and bisphenol A, which are typically present in secondary effluent. Results showed that organic matters in secondary effluent became easier to be removed by the combined process, with ultraviolet absorbance reduction enhanced by 11%–18% or 24%–26% compared to the UF or O3 alone. The removal efficiency of EDC concentration, estrogenicity and acute ecotoxicity by the combined process was 17%–29% or 54%–92%, 19% or 73%, 40% or 60% greater, respectively, than that of the O3 or UF alone. Particularly, when EDCs were treated by the combination of O3 and UF, about 100% EDC removal efficiency was achieved. Overall, the combined application of O3 and UF offers an effective approach to control the concentration and toxicity of EDCs in secondary effluent.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


Sign in / Sign up

Export Citation Format

Share Document