A comparative study on the three-body abrasive wear performance of Q&P processing and low-temperature bainitic transformation for a medium-carbon dual-phase steel

Wear ◽  
2018 ◽  
Vol 402-403 ◽  
pp. 21-29 ◽  
Author(s):  
H.Y. Dong ◽  
K.M. Wu ◽  
X.L. Wang ◽  
T.P. Hou ◽  
R. Yan
Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 660
Author(s):  
Qun Wang ◽  
Yingpeng Zhang ◽  
Xiang Ding ◽  
Shaoyi Wang ◽  
Chidambaram Seshadri Ramachandran

In order to investigate the effect of WC grain size on coatings’ properties and abrasive wear performance, a few WC-20Cr3C2-7Ni coatings with three different WC grain sizes were deposited by the high-velocity oxy-fuel (HVOF) thermal spray process. The phase compositions, microstructures, and mechanical properties of the coatings were investigated. Furthermore, the two- and three-body abrasive wear performances of the three coatings were tested by using SiC and SiO2 abrasives, respectively. The results show that all the three coatings were composed of WC, Cr3C2, and the Ni binder as well as the (W,Cr)2C phase. The abrasive wear resistance of the WC-20Cr3C2-7Ni coating monotonously increased with increasing WC grain size when the SiC abrasive was used in the two- and three-body abrasive wear tests. However, the wear resistance trend was reversed when the SiO2 abrasive was used in the three-body abrasive wear test. The specific wear rate of the WC-20Cr3C2-7Ni coating exposed to the SiC abrasive under the two-body abrasive wear test was the largest. The wear resistance of the coatings was more significantly affected by the hardness of the abrasive particles than the size of carbides present within the coating. The high hardness of SiC can cut both the carbide and the binder phase of the WC-based cermet coatings, resulting in a high wear rate, whereas the low hardness of SiO2 cuts and/or scratches the binder initially, and then it dislodges the carbides from the matrix. The dislodged carbides which were subsequently pulled out from the matrix by the repeated impact of the SiO2 abrasives result in a milder wear rate.


2015 ◽  
Vol 766-767 ◽  
pp. 156-161
Author(s):  
S. Manoharan ◽  
G. Ramadoss ◽  
B. Suresha ◽  
R. Vijay

In the present study, enhancement of abrasion resistance of phenol formaldehyde (PF) resin based hybrid friction composites with different ingredients viz. binder, micron sized fibers and fillers have been synergistically investigated. Hybrid friction composites based on basalt and recycled aramid fibers were prepared using compression moulding. Three-body abrasive wear tests were conducted according to ASTM G-65 standard by dry sand/rubber wheel abrasion tester using two different size of angular silica sand abrasives (212 and 425 μm) at a constant load of 40 N. The results indicated that the wear volume loss increases with increasing abrading distance and abrasive particle size. However, the specific wear rate decreased with increasing abrading distance and increases with increase in abrasive particle size. Addition of fiber content has a significant influence on the abrasive wear performance of these composites. Further, the worn surfaces were examined by scanning electron microscopy to identify the involved wear mechanisms.


Author(s):  
Quanshun Luo ◽  
Haijuan Mei ◽  
Matthew Kitchen ◽  
Yubi Gao ◽  
Leon Bowen

Abstract Nano-bainitic steels have attracted great attention for good wear resistance. In this research, a medium-carbon low-alloyed steel was austempered at a low temperature close to its martensite-start temperature for various times to obtain mixed microstructure of nano-bainite, martensite and retained austenite. The austempered samples were characterised comprehensively by field-emission SEM and quantitative XRD. Its two-body abrasive wear property was evaluated by sliding on a SiC abrasive disc. The results revealed the formation of initial nano-width carbide-free bainitic ferrite (BF) after austempering by 10 min, whereas the BF size and amount both increased with the austempering time. The austempered samples exhibited wear coefficients lower than the quenched martensitic sample by up to 50%. SEM and TEM observations showed wear mechanisms of micro-cutting and ploughing deformation, including the formation of a nano-laminate top layer and bending deformation in the subsurface multiphase microstructure. The decreased wear loss was attributed to the role of retained austenite in the increased plasticity. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3820
Author(s):  
Kun Qin ◽  
Qin Zhou ◽  
Kai Zhang ◽  
Minghao Lv

Both the high temperature and particle environment at the downhole greatly aggravate the abrasive wear and shorten the service life of the fluororubber (FKM) seal seriously in drilling engineering. At present, there is less awareness of the tribological behavior of seals in such complex working conditions. In this work, the abrasive wear performance of the thermally degraded FKM seal was tested in the form of simulating the intrusion of abrasive particles into the interface. Results show that the wear of both rubber seals and metal counterparts is exacerbated. Through the analysis of the wear scar morphology and friction coefficient, it is revealed that more abrasive caves scatter on the surface due to the mechanical degradation of the FKM. These abrasion caves reduce the tendency of particles to escape from the caves and prolong the abrasive action. Furthermore, the abrasion cave alters the particle motion from sliding to rolling, which leads to more caves generated on the surface of the hard tribo-pair. These results enhance the understanding of the abrasive wear for FKM seals and hopefully contribute to the promotion of seals used in hot abrasive particle environments.


2007 ◽  
Vol 458 (1-2) ◽  
pp. 303-311 ◽  
Author(s):  
O.P. Modi ◽  
Pallavi Pandit ◽  
D.P. Mondal ◽  
B.K. Prasad ◽  
A.H. Yegneswaran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document