scholarly journals Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Müllerian duct epithelium

2013 ◽  
Vol 381 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Monica M. Laronda ◽  
Kenji Unno ◽  
Kazutomo Ishi ◽  
Vanida A. Serna ◽  
Lindsey M. Butler ◽  
...  
2016 ◽  
Vol 30 (7) ◽  
pp. 783-795 ◽  
Author(s):  
Jumpei Terakawa ◽  
Altea Rocchi ◽  
Vanida A. Serna ◽  
Erwin P. Bottinger ◽  
Jonathan M. Graff ◽  
...  

2018 ◽  
Author(s):  
Jumpei Terakawa ◽  
Vanida A. Serna ◽  
Devi Nair ◽  
Shigeru Sato ◽  
Kiyoshi Kawakami ◽  
...  

AbstractDuring female mammal reproductive tract development, epithelial cells of the lower Müllerian duct are committed to become stratified squamous epithelium of vagina and ectocervix, when the expression of ΔNp63 transcription factor is induced by mesenchymal cells. The absence of ΔNp63 expression leads to adenosis, the putative precursor of vaginal adenocarcinoma. Our previous studies with genetically engineered mouse models have established that fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP)/SMAD, and activin A/runt related transcription factor 1 (RUNX1) signaling pathways are independently required for ΔNp63 expression in Müllerian duct epithelium (MDE). Here we report that sine oculis homeobox homolog 1 (SIX1) plays a critical role in the activation of ΔNp63 locus in MDE as a downstream transcription factor of mesenchymal signals. In mouse developing reproductive tract, SIX1 expression was restricted to MDE of the future cervix and vagina. SIX1 expression was totally absent in SMAD4 null MDE and was reduced in RUNX1 null and FGFR2 null MDE, indicating that SIX1 is under the control of vaginal mesenchymal factors, BMP4, activin A and FGF7/10. Furthermore, Six1, Runx1 and Smad4 gene-dose-dependently activated ΔNp63 expression in MDE within vaginal fornix. Using a mouse model of diethylstilbestrol (DES)-associated vaginal adenosis, we found DES action through epithelial estrogen receptor α (ESR1) down-regulates SIX1 and RUNX1 in MDE within the vaginal fornix. This study establishes that the vaginal/ectocervical cell fate of MDE is regulated by a collaboration of multiple transcription factors including SMAD4, SIX1 and RUNX1, and the down-regulation of these key transcription factors leads to vaginal adenosis.Author SummaryIn embryogenesis, differentiation fate of cells is specified through constant communication between neighboring cells. In this study, we investigated the molecular mechanism of epithelial cell fate commitment in the lower female reproductive organs utilizing mouse genetic models. The cell fate of epithelial cells in the uterus, cervix and vagina is directed by signaling from mesenchymal cells. We demonstrated that within the epithelial cells of the developing vagina, signals from mesenchymal cells are integrated into activities of transcription factors including SMAD4, RUNX1 and SIX1, which dose-dependently co-operate in the determination of vaginal epithelial cell fate. Disruption of these processes alters the cell fate from vaginal to uterine epithelium, resulting in a condition called vaginal adenosis, a putative precursor of vaginal adenocarcinoma. Women exposed to diethylstilbestrol (DES) in the womb have about 40 times the risk of developing vaginal adenocarcinoma. We determined that developmental exposure to DES induces vaginal adenosis by repressing SIX1 and RUNX1 through ESR1 in the epithelial cells. This discovery enhances the understanding of how early-life events, such as exposure to endocrine disruptors, causes vaginal adenosis, and thus may contribute to the prevention and therapeutic treatment of idiopathic vaginal adenocarcinoma.


2020 ◽  
Vol 27 (12) ◽  
pp. 3307-3320
Author(s):  
Jumpei Terakawa ◽  
Vanida A. Serna ◽  
Devi M. Nair ◽  
Shigeru Sato ◽  
Kiyoshi Kawakami ◽  
...  

AbstractDuring female mammal reproductive tract development, epithelial cells of the lower Müllerian duct are committed to become stratified squamous epithelium of the vagina and ectocervix, when the expression of ΔNp63 transcription factor is induced by mesenchymal cells. The absence of ΔNp63 expression leads to adenosis, the putative precursor of vaginal adenocarcinoma. Our previous studies with genetically engineered mouse models have established that fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP)/SMAD, and activin A/runt-related transcription factor 1 (RUNX1) signaling pathways are independently required for ΔNp63 expression in Müllerian duct epithelium (MDE). Here, we report that sine oculis homeobox homolog 1 (SIX1) plays a critical role in the activation of ΔNp63 locus in MDE as a downstream transcription factor of mesenchymal signals. In the developing mouse reproductive tract, SIX1 expression was restricted to MDE within the future cervix and vagina. SIX1 expression was totally absent in SMAD4 null MDE and was reduced in RUNX1 null and FGFR2 null MDE, indicating that SIX1 is under the control of vaginal mesenchymal factors: BMP4, activin A and FGF7/10. Furthermore, Six1, Runx1, and Smad4 gene-dose-dependently activated ΔNp63 expression in MDE within the vaginal fornix. Using a mouse model of diethylstilbestrol (DES)-associated vaginal adenosis, we found DES action through epithelial estrogen receptor α (ESR1) inhibits activation of ΔNp63 locus in MDE by transcriptionally repressing SIX1 and RUNX1 in the vaginal fornix.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xudong Zhu ◽  
Zhiyang Chen ◽  
Weiyan Shen ◽  
Gang Huang ◽  
John M. Sedivy ◽  
...  

AbstractRemarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.


Sign in / Sign up

Export Citation Format

Share Document