Analysis of the contribution of receptor subdomains to the cooperative binding and internalization of transforming growth factor-β (TGF-β) type I and type II receptors

2008 ◽  
Vol 314 (14) ◽  
pp. 2553-2568 ◽  
Author(s):  
John C. Zwaagstra ◽  
Catherine Collins ◽  
Marie-Josée Langlois ◽  
Maureen D. O'Connor-McCourt
2001 ◽  
Vol 276 (50) ◽  
pp. 46707-46713 ◽  
Author(s):  
Neil A. Bhowmick ◽  
Roy Zent ◽  
Mayshan Ghiassi ◽  
Maureen McDonnell ◽  
Harold L. Moses

Transforming growth factor-β (TGF-β) can induce epithelial to mesenchymal transdifferentiation (EMT) in mammary epithelial cells. TGF-β-meditated EMT involves the stimulation of a number of signaling pathways by the sequential binding of the type II and type I serine/threonine kinase receptors, respectively. Integrins comprise a family of heterodimeric extracellular matrix receptors that mediate cell adhesion and intracellular signaling, hence making them crucial for EMT progression. In light of substantial evidence indicating TGF-β regulation of various β1integrins and their extracellular matrix ligands, we examined the cross-talk between the TGF-β and integrin signal transduction pathways. Using an inducible system for the expression of a cytoplasmically truncated dominant negative TGF-β type II receptor, we blocked TGF-β-mediated growth inhibition, transcriptional activation, and EMT progression. Dominant negative TGF-β type II receptor expression inhibited TGF-β signaling to the SMAD and AKT pathways, but did not block TGF-β-mediated p38MAPK activation. Interestingly, blocking integrin β1function inhibited TGF-β-mediated p38MAPK activation and EMT progression. Limiting p38MAPK activity through the expression of a dominant negative-p38MAPK also blocked TGF-β-mediated EMT. In summary, TGF-β-mediated p38MAPK activation is dependent on functional integrin β1, and p38MAPK activity is required but is not sufficient to induce EMT.


1999 ◽  
Vol 274 (9) ◽  
pp. 5716-5722 ◽  
Author(s):  
Rebecca G. Wells ◽  
Lilach Gilboa ◽  
Yin Sun ◽  
Xuedong Liu ◽  
Yoav I. Henis ◽  
...  

1995 ◽  
Vol 62 (4) ◽  
pp. 386-392 ◽  
Author(s):  
Naoshi Yamada ◽  
Mitsuyasu Kato ◽  
Hidetoshi Yamashita ◽  
Monica Nistér ◽  
Kohei Miyazono ◽  
...  

1997 ◽  
Vol 8 (11) ◽  
pp. 2133-2143 ◽  
Author(s):  
Robert A. Anders ◽  
Sandra L. Arline ◽  
Jules J.E. Doré ◽  
Edward B. Leof

Transforming growth factor β (TGFβ) family ligands initiate a cascade of events capable of modulating cellular growth and differentiation. The receptors responsible for transducing these cellular signals are referred to as the type I and type II TGFβ receptors. Ligand binding to the type II receptor results in the transphosphorylation and activation of the type I receptor. This heteromeric complex then propagates the signal(s) to downstream effectors. There is presently little data concerning the fate of TGFβ receptors after ligand binding, with conflicting reports indicating no change or decreasing cell surface receptor numbers. To address the fate of ligand-activated receptors, we have used our previously characterized chimeric receptors consisting of the ligand binding domain from the granulocyte/macrophage colony-stimulating factor α or β receptor fused to the transmembrane and cytoplasmic domain of the type I or type II TGFβ receptor. This system not only provides the necessary sensitivity and specificity to address these types of questions but also permits the differentiation of endocytic responses to either homomeric or heteromeric intracellular TGFβ receptor oligomerization. Data are presented that show, within minutes of ligand binding, chimeric TGFβ receptors are internalized. However, although all the chimeric receptor combinations show similar internalization rates, receptor down-regulation occurs only after activation of heteromeric TGFβ receptors. These results indicate that effective receptor down-regulation requires cross-talk between the type I and type II TGFβ receptors and that TGFβ receptor heteromers and homomers show distinct trafficking behavior.


2003 ◽  
Vol 23 (20) ◽  
pp. 7230-7242 ◽  
Author(s):  
A. Rebbapragada ◽  
H. Benchabane ◽  
J. L. Wrana ◽  
A. J. Celeste ◽  
L. Attisano

ABSTRACT Myostatin, a transforming growth factor β (TGF-β) family member, is a potent negative regulator of skeletal muscle growth. In this study we characterized the myostatin signal transduction pathway and examined its effect on bone morphogenetic protein (BMP)-induced adipogenesis. While both BMP7 and BMP2 activated transcription from the BMP-responsive I-BRE-Lux reporter and induced adipogenic differentiation, myostatin inhibited BMP7- but not BMP2-mediated responses. To dissect the molecular mechanism of this antagonism, we characterized the myostatin signal transduction pathway. We showed that myostatin binds the type II Ser/Thr kinase receptor. ActRIIB, and then partners with a type I receptor, either activin receptor-like kinase 4 (ALK4 or ActRIB) or ALK5 (TβRI), to induce phosphorylation of Smad2/Smad3 and activate a TGF-β-like signaling pathway. We demonstrated that myostatin prevents BMP7 but not BMP2 binding to its receptors and that BMP7-induced heteromeric receptor complex formation is blocked by competition for the common type II receptor, ActRIIB. Thus, our results reveal a strikingly specific antagonism of BMP7-mediated processes by myostatin and suggest that myostatin is an important regulator of adipogenesis.


Sign in / Sign up

Export Citation Format

Share Document