The RING-domain E3 ubiquitin ligase RNF146 promotes cardiac hypertrophy by suppressing the LKB1/AMPK signaling pathway

2021 ◽  
pp. 112954
Author(s):  
Zhiyong Sheng ◽  
Jianning Xu ◽  
Fuxing Li ◽  
Ying Yuan ◽  
Xiaogang Peng ◽  
...  
2021 ◽  
Author(s):  
Peng Jiang ◽  
Lejiao Ren ◽  
Li Zhi ◽  
Zhong Yu ◽  
Fengxiang Lv ◽  
...  

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Robert D Wardlow ◽  
Sung Hee Choi ◽  
Brian McMillan ◽  
Stephen C Blacklow

2020 ◽  
Vol 69 ◽  
pp. 109543 ◽  
Author(s):  
Jiangbo Jin ◽  
Zhuo Lu ◽  
Xiaomei Wang ◽  
Yufeng Liu ◽  
Tianyu Han ◽  
...  

2018 ◽  
Author(s):  
I-Hsuan Chen ◽  
Jui-En Chang ◽  
Chen-Yu Wu ◽  
Ying-Ping Huang ◽  
Yau-Huei Hsu ◽  
...  

AbstractOne upregulated host gene identified previously was found involved in the infection process ofBamboo mosaic virus(BaMV). The full-length cDNA of this gene was cloned by 5′- and 3′-rapid amplification of cDNA ends and found to encode a polypeptide containing a conserved RING-domain and a transmembrane domain. The gene might function as an E3 ubiquitin ligase. We designated this protein inNicotiana benthamianaas ubiquitin E3 ligase containing RING-domain 1 (NbUbE3R1). Further characterization by usingTobacco rattle virus-based virus-induced gene silencing revealed an increased BaMV accumulation in both knockdown plants and protoplasts. To further inspect the functional role of NbUbE3R1 in BaMV accumulation, NbUbE3R1 was expressed inN. benthamianaplants. The wild-type NbUbE3R1-orange fluorescent protein (NbUbE3R1-OFP), NbUbE3R1/△TM-OFP (removal of the transmembrane domain) and NbUbE3R1/mRING-OFP (mutation at the RING domain, the E2 interaction site) were transiently expressed in plants. NbUbE3R1 and its derivatives all functioned in restricting BaMV accumulation. The common feature of these constructs was the intact substrate-interacting domain. Yeast two-hybrid and co-immunoprecipitation experiments used to determine the possible viral-encoded substrate of NbUbE3R1 revealed the replicase of BaMV as the possible substrate. In conclusion, we identified an upregulated gene, NbUbE3R1, that plays a role in BaMV replication.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hirohito Shimizu ◽  
Adam D Langenbacher ◽  
Jie Huang ◽  
Kevin Wang ◽  
Georg Otto ◽  
...  

Altered Ca2+ handling is often present in diseased hearts undergoing structural remodeling and functional deterioration. However, whether Ca2+ directly regulates sarcomere structure has remained elusive. Using a zebrafish ncx1 mutant, we explored the impacts of impaired Ca2+ homeostasis on myofibril integrity. We found that the E3 ubiquitin ligase murf1 is upregulated in ncx1-deficient hearts. Intriguingly, knocking down murf1 activity or inhibiting proteasome activity preserved myofibril integrity, revealing a MuRF1-mediated proteasome degradation mechanism that is activated in response to abnormal Ca2+ homeostasis. Furthermore, we detected an accumulation of the murf1 regulator FoxO in the nuclei of ncx1-deficient cardiomyocytes. Overexpression of FoxO in wild type cardiomyocytes induced murf1 expression and caused myofibril disarray, whereas inhibiting Calcineurin activity attenuated FoxO-mediated murf1 expression and protected sarcomeres from degradation in ncx1-deficient hearts. Together, our findings reveal a novel mechanism by which Ca2+ overload disrupts myofibril integrity by activating a Calcineurin-FoxO-MuRF1-proteosome signaling pathway.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Christos T. Chasapis ◽  
Ariadni K. Loutsidou ◽  
Malvina G. Orkoula ◽  
Georgios A. Spyroulias

Human Arkadia is a nuclear protein consisted of 989 amino acid residues, with a characteristic RING domain in its C-terminus. The RING domain harbours the E3 ubiquitin ligase activity needed by Arkadia to ubiquitinate its substrates such as negative regulators of TGF- signaling. The RING finger domain of Arkadia is a RING-H2 type and its structure and stability is strongly dependent on the presence of two bound Zn(II) ions attached to the protein frame through a defined Cys3-His2-Cys3 motif. In the present paper we transform the RING-H2 type of Arkadia finger domain to nonnative RING sequence, substituting the zinc-binding residues or to Arginine, through site-directed mutagenesis. The recombinant expression, inEscherichia coli, of the mutants C955R and H960R reveal significant lower yield in respect with the native polypeptide of Arkadia RING-H2 finger domain. In particular, only the C955R mutant exhibits expression yield sufficient for recombinant protein isolation and preliminary studies. Atomic absorption measurements and preliminary NMR data analysis reveal that the C955R point mutation in the RING Finger domain of Arkadia diminishes dramatically the zinc binding affinity, leading to the breakdown of the global structural integrity of the RING construct.


2008 ◽  
Vol 28 (19) ◽  
pp. 6104-6112 ◽  
Author(s):  
Michael S. Y. Huen ◽  
Jun Huang ◽  
Jingsong Yuan ◽  
Masahiro Yamamoto ◽  
Shizuo Akira ◽  
...  

ABSTRACT The E2 ubiquitin-conjugating enzyme UBC13 plays pivotal roles in diverse biological processes. Recent studies have elucidated that UBC13, in concert with the E3 ubiquitin ligase RNF8, propagates the DNA damage signal via a ubiquitylation-dependent signaling pathway. However, mechanistically how UBC13 mediates its role in promoting checkpoint protein assembly and its genetic requirement for E2 variants remain elusive. Here we provide evidence to support the idea that the E3 ubiquitin ligase complex RNF8-UBC13 functions independently of E2 variants and is sufficient in facilitating ubiquitin conjugations and accumulation of DNA damage mediator 53BP1 at DNA breaks. The RNF8 RING domain serves as the molecular platform to anchor UBC13 at the damaged chromatin, where localized ubiquitylation events allow sustained accumulation of checkpoint proteins. Intriguingly, we found that only a group of RING domains derived from E3 ubiquitin ligases, which have been shown to interact with UBC13, enabled UBC13-mediated FK2 and 53BP1 focus formation at DNA breaks. We propose that the RNF8 RING domain selects and loads a subset of UBC13 molecules, distinct from those that exist as heterodimers, onto sites of double-strand breaks, which facilitates the amplification of DNA damage signals.


2011 ◽  
Vol 5 ◽  
pp. BCBCR.S8184 ◽  
Author(s):  
Apichart Atipairin ◽  
Adisorn Ratanaphan

BRCA1 is a tumor suppressor protein involved in maintaining genomic integrity through multiple functions in DNA damage repair, transcriptional regulation, cell cycle checkpoint, and protein ubiquitination. The BRCA1-BARD1 RING complex has an E3 ubiquitin ligase function that plays essential roles in response to DNA damage repair. BRCA1-associated cancers have been shown to confer a hypersensitivity to chemotherapeutic agents. Here, we have studied the functional consequence of the in vitro E3 ubiquitin ligase activity and cisplatin sensitivity of the missense mutation D67Y BRCA1 RING domain. The D67Y BRCA1 RING domain protein exhibited the reduced ubiquitination function, and was more susceptible to the drug than the D67E or wild-type BRCA1 RING domain protein. This evidence emphasized the potential of using the BRCA1 dysfunction as an important determinant of chemotherapy responses in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document