scholarly journals Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells

2020 ◽  
Vol 28 (6) ◽  
pp. 1392-1416 ◽  
Author(s):  
Candice Ashmore-Harris ◽  
Madeleine Iafrate ◽  
Adeel Saleem ◽  
Gilbert O. Fruhwirth
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


2020 ◽  
Vol 80 (21) ◽  
pp. 4731-4740 ◽  
Author(s):  
Surya Murty ◽  
Louai Labanieh ◽  
Tara Murty ◽  
Gayatri Gowrishankar ◽  
Tom Haywood ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi124-vi124
Author(s):  
Angelie Rivera-Rodriguez ◽  
Lan Hoang-Minh ◽  
Leyda Marrero-Morales ◽  
Duane Mitchell ◽  
Carlos Rinaldi

Abstract BACKGROUND Adoptive cell therapies (ACT) are strategies being explored to boost the immune response against cancer. ACT cancer immunotherapies are effective against metastatic melanoma, leukemia, and lymphoma, but face challenges in treating other solid tumors, such as in the brain. A critical step for the success of ACT in solid cancers is achieving trafficking and persistence of T-cells at tumor sites. Glioblastoma (GBM) is the most common and aggressive cancer of the central nervous system in adults, with a prognosis of 15-18-month average patient survival after diagnosis. Biomedical imaging is often used to track cell therapies. Magnetic Particle Imaging (MPI) is a novel biomedical imaging modality enabling non-invasive visualization of the distribution of biocompatible superparamagnetic iron oxide (SPIO) tracers. OBJECTIVE Label T-cells with SPIO to non-invasively track adoptive T cell transfer immunotherapy with MPI in the context of brain cancer. METHODS Murine pmel-DsRed T-cells were isolated from the spleen of a transgenic C57BL/6 mouse, and were exposed to different SPIO concentrations ex vivo. Cell viability, phenotype, and cytotoxic function were analyzed to determine if T-cells were affected by the SPIO labeling. Moreover, in vivo experiments were performed in a murine GBM model, and labeled T-cells were injected intravenously and tracked using MPI. RESULTS The SPIO-labeling of T-cells did not affected cell viability, phenotype, or cell cytotoxic function at all tested incubation conditions. The internalized SPIO can be quantified and spatially detected using MPI both in vitro and in vivo. In addition, MPI in vivo tracking shows T-cells accumulation in liver and lungs, as well in the spleen and brain, as showed ex vivo. CONCLUSIONS SPIO-labeling of T-cells did not affected its cytotoxic function and MPI allows for in vivo tracking of adoptively T-cell transfer. MPI will provide better understanding of ACT dynamics to accelerate development of novel treatments.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25857 ◽  
Author(s):  
Ehsan Sharif-Paghaleh ◽  
Kavitha Sunassee ◽  
Richard Tavaré ◽  
Kulachelvy Ratnasothy ◽  
Alexander Koers ◽  
...  

Biomaterials ◽  
2017 ◽  
Vol 112 ◽  
pp. 192-203 ◽  
Author(s):  
Seul-Gi Oh ◽  
Xian Li ◽  
Ho Won Lee ◽  
Thoudam Debraj Singh ◽  
Sang Bong Lee ◽  
...  

Author(s):  
Aparna Ramanathan ◽  
Ian A. J. Lorimer

AbstractIn spite of significant recent advances in our understanding of the genetics and cell biology of glioblastoma, to date, this has not led to improved treatments for this cancer. In addition to small molecule, antibody, and engineered virus approaches, engineered cells are also being explored as glioblastoma therapeutics. This includes CAR-T cells, CAR-NK cells, as well as engineered neural stem cells and mesenchymal stem cells. Here we review the state of this field, starting with clinical trial studies. These have established the feasibility and safety of engineered cell therapies for glioblastoma and show some evidence for activity. Next, we review the preclinical literature and compare the strengths and weaknesses of various starting cell types for engineered cell therapies. Finally, we discuss future directions for this nascent but promising modality for glioblastoma therapy.


2021 ◽  
Vol 28 ◽  
Author(s):  
Sanjeev Gautam ◽  
Sangita Biswas ◽  
Birbal Singh ◽  
Ying Guo ◽  
Peng Deng ◽  
...  

: There is a momentous surge in the development of stem cell technology as a therapeutic and diagnostic tools. Stem cell-derived cells are currently used in various clinical trials. However, key issues and challenges involve the low differentiation efficiency, integration, and functioning of transplanted stem cells-derived cells. Extraction of bone marrow, adipose, or other mesenchymal stem cells (MSCs) involves invasive methods, specialized skills, and expensive technologies. Urine-derived cells, on the other hand, are obtained by non-invasive methods. Samples can be obtained repeatedly from patients of any age. Urine-derived cells are used to generate reprogrammed or induced pluripotent stem cells (iPSCs), which can be cultured, and differentiated into various types of cell lineages for biomedical investigations and drug testing in vitro or in vivo using model animals of human diseases. Urine cell-derived iPSCs (UiPSCs) have emerged as a major area of research and immense therapeutic significance. Given that preliminary preclinical studies are successful in terms of safety and as a regenerative tool, the UiPSCs will pave the way to develop and expedite various types of autologous stem cell therapies.


2016 ◽  
Vol 44 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Nia Emami-Shahri ◽  
Sophie Papa

Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19+ cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behave in vivo and in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans.


Sign in / Sign up

Export Citation Format

Share Document