scholarly journals Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets.

1990 ◽  
Vol 265 (29) ◽  
pp. 17420-17423 ◽  
Author(s):  
P Thiagarajan ◽  
J F Tait
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah L. Millington-Burgess ◽  
Matthew T. Harper

AbstractArterial thrombosis triggers myocardial infarction and is a leading cause of death worldwide. Procoagulant platelets, a subpopulation of activated platelets that expose phosphatidylserine (PS), promote coagulation and occlusive thrombosis. Procoagulant platelets may therefore be a therapeutic target. PS exposure in procoagulant platelets requires TMEM16F, a phospholipid scramblase. Epigallocatechin gallate (EGCG) has been reported to inhibit TMEM16F but this has been challenged. We investigated whether EGCG inhibits PS exposure in procoagulant platelets. PS exposure is often measured using fluorophore-conjugated annexin V. EGCG quenched annexin V-FITC fluorescence, which gives the appearance of inhibition of PS exposure. However, EGCG did not quench annexin V-APC fluorescence. Using this fluorophore, we show that EGCG does not inhibit annexin V binding to procoagulant platelets. We confirmed this by using NBD-labelled PS to monitor PS scrambling. EGCG did not quench NBD fluorescence and did not inhibit PS scrambling. Procoagulant platelets also release PS-exposing extracellular vesicles (EVs) that further propagate coagulation. Surprisingly, EGCG inhibited EV release. This inhibition required the gallate group of EGCG. In conclusion, EGCG does not inhibit PS exposure in procoagulant platelets but does inhibit the EV release. Future investigation of this inhibition may help us further understand how EVs are released by procoagulant platelets.


2002 ◽  
Vol 282 (6) ◽  
pp. C1313-C1321 ◽  
Author(s):  
Xiuqiong Wang ◽  
Marcia A. Kaetzel ◽  
Sung E. Yoo ◽  
Paul S. Kim ◽  
John R. Dedman

The exposure of anionic phospholipids on the external surface of injured endothelial cells and activated platelets is a primary biological signal to initiate blood coagulation. Disease conditions that promote the formation of ectopic thrombi result in tissue ischemia. Annexins, Ca2+-dependent anionic phospholipid binding proteins, are potential therapeutic agents for the inhibition of coagulation. We have designed a transgene that targets secretion of annexin V from cultured thyroid cells under the control of doxycycline. Our results indicate that annexin V in the endoplasmic reticulum (ER)/Golgi lumen does not affect the synthesis, processing, and secretion of thyroglobulin. ER luminal Ca2+was moderately increased and can be released by inositol 1,4,5-trisphosphate. Our study demonstrates that targeting and secretion of annexin V through the secretory pathway of mammalian cells does not adversely affect cellular function. Regulated synthesis and release of annexin V may exert anticoagulatory and anti-inflammatory effects systemically and may prove useful in further developing therapeutic strategies for conditions including antiphospholipid syndrome.


1996 ◽  
Vol 314 (3) ◽  
pp. 1027-1033 ◽  
Author(s):  
Karine AUPEIX ◽  
Florence TOTI ◽  
Nathalie SATTA ◽  
Pierre BISCHOFF ◽  
Jean-Marie FREYSSINET

Oxidized cholesterol compounds or oxysterols are thought to be potent membrane-destabilizing agents. Anionic phospholipids, chiefly phosphatidylserine, have a procoagulant potential due to their ability to favour the membrane assembly of the characteristic clotting enzyme complexes including the tissue factor-dependent initiating complex. However, in resting cells, phosphatidylserine is sequestered in the inner leaflet of the plasma membrane. When THP-1 monocytic cells were cultured in the presence of 7β-hydroxycholesterol (7β-OH) or 25-hydroxycholesterol (25-OH), prothrombinase, which reflects anionic phospholipid exposure and tissue factor (TF) procoagulant activities, increased in a time- and dose-dependent manner. 7β-OH appeared 1.5- to 2-fold more potent than 25-OH. Interestingly, no effect of cholesterol itself could be detected on procoagulant activities. Nevertheless, no difference in TF activity could be detected between oxysterol-treated and control cells after disruption. TF antigen expression was the same in oxysterol-treated and control cells as shown by flow cytometry. In contrast, the use of labelled annexin V, a protein probe of anionic phospholipids, revealed an elevated number of cells with exposed phosphatidylserine. Because the latter also constitutes a signal for phagocyte recognition of apoptotic cells and fragments, and a proportion of cells displayed altered morphology with condensed chromatin and membrane blebs, analysis of DNA was performed and indicated apoptosis in oxysterol-treated cells. Hence, oxysterol-induced phosphatidylserine exposure and enhanced TF activity may result from apoptosis. These results suggest relationships between oxysterol and the amplification of coagulation reactions by monocytic cells resulting from induced phosphatidylserine exposure.


2005 ◽  
Vol 93 (06) ◽  
pp. 1128-1136 ◽  
Author(s):  
Paola van der Meijden ◽  
Marion Feijge ◽  
Peter Giesen ◽  
Maya Huijberts ◽  
Lisette van Raak ◽  
...  

SummaryActivated platelets participate in arterial thrombosis by forming aggregates and potentiating the coagulation through exposure of procoagulant phosphatidylserine. The function of the two receptors for ADP, P2Y1 and P2Y12, is well-established in aggregation, but is incompletely understood in the platelet procoagulant response. We established that, in PRP from healthy subjects, ADP accelerated and potentiated tissue factor-induced throm-bin generation exclusively via stimulation of P2Y12 and not via P2Y1 receptors. The P2Y12 receptors also mediated the potentiating effect of PAR-1 stimulation on thrombin generation. Furthermore, ADP enhanced in a P2Y12-dependent manner the Ca2+ response induced by thrombin, which was either added externally or generated in-situ. This ADP effect was in part dependent of phosphoinositide 3-kinase and was paralleled by increased phosphatidylserine exposure. In PRP from (young) patients with either stroke or type-II diabetes, platelet-dependent thrombin generation was similarly enhanced by ADP or SFLLRN as in healthy subjects. In PRP from stroke patients of older age, the P2Y12-mediated contribution to thrombin generation was variably reduced by two weeks of clopidogrel medication. Remaining P2Y12 activity after medication correlated with remaining P2Y12-dependent P-selectin exposure, i.e. Ca2+-dependent secretion, likely due to incomplete antagonism of P2Y12 receptors. Together, these results indicate that physiological platelet agonists amplify phosphatidylserine exposure and subsequent thrombin generation by release of ADP and P2Y12-receptor stimulation. This P2Y12 response is accomplished by a novel Ca2+ signalling pathway. It is similarly active in platelets from control subjects and patients at thrombotic risk. Finally, the thrombo-gram method is useful for measuring incomplete P2Y12 inhibition with clopidogrel.


2012 ◽  
Vol 302 (4) ◽  
pp. C644-C651 ◽  
Author(s):  
Oliver Borst ◽  
Majed Abed ◽  
Ioana Alesutan ◽  
Syeda T. Towhid ◽  
Syed M. Qadri ◽  
...  

Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+activity, which may result from treatment with the Ca2+ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1694-1702 ◽  
Author(s):  
L. Alberio ◽  
O. Safa ◽  
K. J. Clemetson ◽  
C. T. Esmon ◽  
G. L. Dale

Factor V (FV) present in platelet -granules has a significant but incompletely understood role in hemostasis. This report demonstrates that a fraction of platelets express very high levels of surface-bound, -granule FV on simultaneous activation with 2 agonists, thrombin and convulxin, an activator of the collagen receptor glycoprotein VI. This subpopulation of activated platelets represents 30.7% ± 4.7% of the total population and is referred to as convulxin and thrombin–induced-FV (COAT-FV) platelets. COAT-FV platelets are also observed on activation with thrombin plus collagen types I, V, or VI, but not with type III. No single agonist examined was able to produce COAT-FV platelets, although ionophore A23187 in conjunction with either thrombin or convulxin did generate this population. COAT-FV platelets bound annexin-V, indicating exposure of aminophospholipids and were enriched in young platelets as identified by the binding of thiazole orange. The functional significance of COAT-FV platelets was investigated by demonstrating that factor Xa preferentially bound to COAT-FV platelets, that COAT-FV platelets had more FV activity than either thrombin or A23187–activated platelets, and that COAT-FV platelets were capable of generating more prothrombinase activity than any other physiologic agonist examined. Microparticle production by dual stimulation with thrombin and convulxin was less than that observed with A23187, indicating that microparticles were not responsible for all the activities observed. These data demonstrate a new procoagulant component produced from dual stimulation of platelets with thrombin and collagen. COAT-FV platelets may explain the unique role of -granule FV and the hemostatic effectiveness of young platelets.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3049-3049
Author(s):  
Reema Jasuja ◽  
Hans-Ulrich Pauer ◽  
Regan T Baird ◽  
Bruce Furie ◽  
Barbara Furie

Abstract Abstract 3049 Poster Board II-1025 Colocalization and assembly of blood coagulation factors in the presence of negatively charged phospholipids leads to a 1,000-fold increase in the rate of thrombin generation compared to the solution reaction. We have established prothrombin fragment 1, the region of prothrombin containing the γ-carboxy-glutamic acid domain, as a probe for anionic phospholipids including phosphatidylserine. Prothrombin fragment 1 binds with high affinity to phosphatidylserine-containing membranes in vitro and identifies phosphatidylserine exposure relevant for the site of assembly of coagulation complexes in vivo. In order to determine the effect of phosphatidylserine exposure on thrombus formation during the laser injury model in vivo, we treated mice orally with the Cu2+ chelator tetrathiomolybdate for one week prior to study. This treatment has been shown to suppress phosphatidylserine exposure in rats (PNAS, 100: 6700-05, 2003). After copper chelator treatment, normal partial thromboplastin times (39 sec vs 42 sec, p=0.5) and whole blood counts in treated versus untreated mice were similar, suggesting that copper chelation did not affect the function of coagulation factors or total blood cell counts. Annexin V and Prothrombin fragment 1 were also used to measure phosphatidylserine exposure after thrombin (1 U/ml) stimulation of washed platelets using flow cytometric analysis. Platelets from untreated mice exhibited 2-fold increase in binding of both Annexin V and Prothrombin fragment 1 after thrombin stimulation; these values are similar to those previously reported. In contrast, the platelets of treated mice did not expose phosphatidylserine upon thrombin stimulation. Treatment with copper chelator did not affect platelet degranulation, as determined by surface exposure of P-selectin in flow cytometry. In addition, total phospholipid content and the ratio of outer to inner membrane phospholipids was not affected by treatment with copper chelator, suggesting that any reduction in detection of phosphatidylserine was due to reduction in exposure on the cell surface in response to an appropriate stimulus rather than reduced biosynthesis. Fluorescently conjugated Prothrombin fragment 1 or fluorescently conjugated antibody directed against phosphatidylserine were used as probes to follow the kinetics of phosphatidylserine exposure after the laser injury of cremaster muscle arterioles of a living mouse using high speed fluorescence intravital microscopy. Endogenous platelets were labeled with a fluorescently conjugated Fab fragment of an anti-CD41 antibody and fibrin deposition was measured using a fluorescently conjugated antibody that recognizes fibrin but not fibrinogen. We observed a 42% reduction (median of 18 thrombi, p=0.02) in Prothrombin fragment 1 binding and a 60% reduction (median of 27 thrombi, p=0.0002) in anti-phosphatidylserine binding after laser injury compared to untreated animals (n=58 thrombi). The accumulation of platelets during thrombus formation was not affected by the treatment when compared to untreated mice (p=0.4). On the other hand, fibrin deposition was reduced by 64% in treated mice (median of 38 thrombi, p=0.001) when compared to untreated animals (39 of thrombi). These data suggest that suppression of phosphatidylserine exposure reduces assembly of coagulation complexes resulting in a suboptimal concentration of thrombin for full fibrin generation but sufficient thrombin to activate platelets to yield a normal platelet thrombus. This emphasizes the importance of the exposure of anionic phospholipids as the surface for the colocalization of the coagulation complexes in vivo. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 43 (2) ◽  
pp. 431-444 ◽  
Author(s):  
Mohamed Jemaà ◽  
Myriam Fezai ◽  
Rosi Bissinger ◽  
Florian Lang

Suicidal erythrocyte death or eryptosis contributes to or even accounts for anemia in a wide variety of clinical conditions, such as iron deficiency, dehydration, hyperphosphatemia, vitamin D excess, chronic kidney disease (CKD), hemolytic-uremic syndrome, diabetes, hepatic failure, malignancy, arteriitis, sepsis, fever, malaria, sickle-cell disease, beta-thalassemia, Hb-C and G6PD-deficiency, Wilsons disease, as well as advanced age. Moreover, eryptosis is triggered by a myriad of xenobiotics and endogenous substances including cytotoxic drugs and uremic toxins. Eryptosis is characterized by cell membrane scrambling with phosphatidylserine exposure to the erythrocyte surface. Triggers of eryptosis include oxidative stress, hyperosmotic shock, and energy depletion. Signalling involved in the regulation of eryptosis includes Ca2+ entry, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, cyclin-dependent kinase 4, AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and ill-defined tyrosine kinases. Inhibitors of eryptosis may prevent anaemia in clinical conditions associated with enhanced eryptosis and stimulators of eryptosis may favourably influence the clinical course of malaria. Additional experimentation is required to uncover further clinical conditions with enhanced eryptosis, as well as further signalling pathways, further stimulators, and further inhibitors of eryptosis. Thus, a detailed description of the methods employed in the analysis of eryptosis may help those, who enter this exciting research area. The present synopsis describes the experimental procedures required for the analysis of phosphatidylserine exposure at the cell surface with annexin-V, cell volume with forward scatter, cytosolic Ca2+ activity ([Ca2+]i) with Fluo3, oxidative stress with 2′,7′-dichlorodihydrofuorescein diacetate (DCFDA), glutathione (GSH) with mercury orange 1(4-chloromercuryphenyl-azo-2-naphthol), lipid peroxidation with BODIPY 581/591 C11 fluorescence, and ceramide abundance with specific antibodies. The contribution of kinases and caspases is defined with the use of the respective inhibitors. It is hoped that the present detailed description of materials and methods required for the analysis of eryptosis encourages further scientists to enter this highly relevant research area.


Author(s):  
Gábor Woth ◽  
Margit Tőkés-Füzesi ◽  
Tamás Magyarlaki ◽  
Gábor L Kovács ◽  
István Vermes ◽  
...  

Background The treatment of severe sepsis highly depends on the identification of bacteria or fungi from blood and/or other body materials. Although widely available blood culturing and risk assessment scores are not completely reliable, current guidelines do not recommend the wide empirical use of antifungal medications based on questionable benefit or possible side-effects. We aimed to test whether platelet-derived microparticle (MP) measurements can improve the early detection of the infective agent behind sepsis. Methods Thirty-three consecutive severe septic patients from our university intensive care unit were included in our prospective study. MP number and surface antigen characteristics were followed by flow cytometry on days 1 (admission), 3 and 5. For microbiological identification, various specimens were collected on admission and in case of overall status deterioration. Results On admission, septic patients showed elevated annexin V and constitutive platelet marker (CD41)-positive MP numbers compared with volunteers. Mixed fungal septic patients showed significantly elevated annexin V and CD41-positive particle numbers on day 1 ( P < 0.05) compared with the non-fungal septic group. Adhesive platelet marker (CD42a) harbouring vesicles were negligible in the non-fungal group, while fungal septic patients showed significantly elevated numbers in all measurements ( P < 0.01). Particles from activated platelets (PAC1) had elevated numbers in the first and fifth study days compared with non-fungal septic patients ( P < 0.05). Conclusions The measurement of CD42a- and PAC1-positive microparticles may provide important additional information which can help to improve the early instalment of antifungal therapy of severe septic patients.


Sign in / Sign up

Export Citation Format

Share Document