Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging

1999 ◽  
Vol 98-99 ◽  
pp. 535-546 ◽  
Author(s):  
A. Venäläinen ◽  
M. Frech ◽  
M. Heikinheimo ◽  
A. Grelle
2019 ◽  
Vol 23 (4) ◽  
pp. 1867-1883 ◽  
Author(s):  
Igor Pavlovskii ◽  
Masaki Hayashi ◽  
Daniel Itenfisu

Abstract. Snowpack accumulation and depletion are important elements of the hydrological cycle in the Canadian prairies. The surface runoff generated during snowmelt is transformed into streamflow or fills numerous depressions driving the focussed recharge of groundwater in this dry setting. The snowpack in the prairies can undergo several cycles of accumulation and depletion in a winter. The timing of the melt affects the mechanisms of snowpack depletion and their hydrological implications. The effects of midwinter melts were investigated at four instrumented sites in the Canadian prairies. Unlike net radiation-driven snowmelt during spring melt, turbulent sensible heat fluxes were the dominant source of energy inputs for midwinter melt occurring in the period with low solar radiation inputs. Midwinter melt events affect several aspects of hydrological cycle with lower runoff ratios than subsequent spring melt events, due to their role in the timing of the focussed recharge. Remote sensing data have shown that midwinter melt events regularly occur under the present climate throughout the Canadian prairies, indicating applicability of the study findings throughout the region.


2018 ◽  
Vol 146 (2) ◽  
pp. 417-433 ◽  
Author(s):  
Hidetaka Hirata ◽  
Ryuichi Kawamura ◽  
Masaya Kato ◽  
Taro Shinoda

Abstract The active roles of sensible heat supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone, which occurred in the middle of January 2013, were examined by using a regional cloud-resolving model. In this study, a control experiment and three sensitivity experiments without sensible and latent heat fluxes from the warm currents were conducted. When the cyclone intensified, sensible heat fluxes from these currents become prominent around the cold conveyor belt (CCB) in the control run. Comparisons among the four runs revealed that the sensible heat supply facilitates deepening of the cyclone’s central pressure, CCB development, and enhanced latent heating over the bent-back front. The sensible heat supply enhances convectively unstable conditions within the atmospheric boundary layer along the CCB. The increased convective instability is released by the forced ascent associated with frontogenesis around the bent-back front, eventually promoting updraft and resultant latent heating. Additionally, the sensible heating leads to an increase in the water vapor content of the saturated air related to the CCB through an increase in the saturation mixing ratio. This increased water vapor content reinforces the moisture flux convergence at the bent-back front, contributing to the activation of latent heating. Previous research has proposed a positive feedback process between the CCB and latent heating over the bent-back front in terms of moisture supply from warm currents. Considering the above two effects of the sensible heat supply, this study revises the positive feedback process.


2017 ◽  
Vol 145 (7) ◽  
pp. 2575-2595 ◽  
Author(s):  
Edoardo Mazza ◽  
Uwe Ulbrich ◽  
Rupert Klein

The processes leading to the tropical transition of the October 1996 medicane in the western Mediterranean are investigated on the basis of a 50-member ensemble of regional climate model (RCM) simulations. By comparing the composites of transitioning and nontransitioning cyclones it is shown that standard extratropical dynamics are responsible for the cyclogenesis and that the transition results from a warm seclusion process. As the initial thermal asymmetries and vertical tilt of the cyclones are reduced, a warm core forms in the lower troposphere. It is demonstrated that in the transitioning cyclones, the upper-tropospheric warm core is also a result of the seclusion process. Conversely, the warm core remains confined below 600 hPa in the nontransitioning systems. In the baroclinic stage, the transitioning cyclones are characterized by larger vertical wind shear and intensification rates. The resulting stronger low-level circulation in turn is responsible for significantly larger latent and sensible heat fluxes throughout the seclusion process.


2014 ◽  
Vol 11 (16) ◽  
pp. 4507-4519 ◽  
Author(s):  
T. S. El-Madany ◽  
H. F. Duarte ◽  
D. J. Durden ◽  
B. Paas ◽  
M. J. Deventer ◽  
...  

Abstract. Sodar (SOund Detection And Ranging), eddy-covariance, and tower profile measurements of wind speed and carbon dioxide were performed during 17 consecutive nights in complex terrain in northern Taiwan. The scope of the study was to identify the causes for intermittent turbulence events and to analyze their importance in nocturnal atmosphere–biosphere exchange as quantified with eddy-covariance measurements. If intermittency occurs frequently at a measurement site, then this process needs to be quantified in order to achieve reliable values for ecosystem characteristics such as net ecosystem exchange or net primary production. Fourteen events of intermittent turbulence were identified and classified into above-canopy drainage flows (ACDFs) and low-level jets (LLJs) according to the height of the wind speed maximum. Intermittent turbulence periods lasted between 30 and 110 min. Towards the end of LLJ or ACDF events, positive vertical wind velocities and, in some cases, upslope flows occurred, counteracting the general flow regime at nighttime. The observations suggest that the LLJs and ACDFs penetrate deep into the cold air pool in the valley, where they experience strong buoyancy due to density differences, resulting in either upslope flows or upward vertical winds. Turbulence was found to be stronger and better developed during LLJs and ACDFs, with eddy-covariance data presenting higher quality. This was particularly indicated by spectral analysis of the vertical wind velocity and the steady-state test for the time series of the vertical wind velocity in combination with the horizontal wind component, the temperature, and carbon dioxide. Significantly higher fluxes of sensible heat, latent heat, and shear stress occurred during these periods. During LLJs and ACDFs, fluxes of sensible heat, latent heat, and CO2 were mostly one-directional. For example, exclusively negative sensible heat fluxes occurred while intermittent turbulence was present. Latent heat fluxes were mostly positive during LLJs and ACDFs, with a median value of 34 W m−2, while outside these periods the median was 2 W m−2. In conclusion, intermittent turbulence periods exhibit a strong impact on nocturnal energy and mass fluxes.


2012 ◽  
Vol 143 (3) ◽  
pp. 451-480 ◽  
Author(s):  
M. N. Bouin ◽  
D. Legain ◽  
O. Traullé ◽  
S. Belamari ◽  
G. Caniaux ◽  
...  
Keyword(s):  

2009 ◽  
Vol 13 (7) ◽  
pp. 987-998 ◽  
Author(s):  
Z. Gao ◽  
D. H. Lenschow ◽  
Z. He ◽  
M. Zhou

Abstract. In order to examine energy partitioning and CO2 exchange over a steppe prairie in Inner Mongolia, China, fluxes of moisture, heat and CO2 in the surface layer from June 2007 through June 2008 were calculated using the eddy covariance method. The study site was homogenous and approximately 1500 m×1500 m in size. Seasonal and diurnal variations in radiation components, energy components and CO2 fluxes are examined. Results show that all four radiation components changed seasonally, resulting in a seasonal variation in net radiation. The radiation components also changed diurnally. Winter surface albedo was higher than summer surface albedo because during winter the snow-covered surface increased the surface albedo. The seasonal variations in both sensible heat and CO2 fluxes were stronger than those of latent heat and soil heat fluxes. Sensible heat flux was the main consumer of available energy for the entire experimental period. The energy imbalance problem was encountered and the causes are analyzed.


2014 ◽  
Vol 11 (4) ◽  
pp. 5969-5995
Author(s):  
C. C. van Heerwaarden ◽  
A. J. Teuling

Abstract. This study investigates the difference in land–atmosphere interactions between grassland and forest during typical heat wave conditions in order to understand the controversial results of Teuling et al. (2010) (T10, hereafter), who have found the systematic occurrence of higher sensible heat fluxes over forest than over grassland during heat wave conditions. With a simple, but accurate coupled land–atmosphere model, we are able to reproduce the findings of T10 for both normal summer and heat wave conditions, and to carefully explore the sensitivity of the coupled land–atmosphere system to changes in incoming radiation and early-morning temperature. Our results emphasize the importance of fast processes during the onset of heat waves, since we are able to explain the results of T10 without having to take into account changes in soil moisture. In order to disentangle the contribution of differences in several static and dynamic properties between forest and grassland, we have performed an experiment in which new land use types are created that are equal to grassland, but with one of its properties replaced by that of forest. From these, we conclude that the closure of stomata in the presence of dry air is by far the most important process in creating the different behavior of grassland and forest during the onset of a heat wave. However, we conclude that for a full explanation of the results of T10 also the other properties (albedo, roughness and the ratio of minimum stomatal resistance to leaf-area index) play an important, but indirect role; their influences mainly consist of strengthening the feedback that leads to the closure of the stomata by providing more energy that can be converted into sensible heat. The model experiment also confirms that, in line with the larger sensible heat flux, higher atmospheric temperatures occur over forest.


2018 ◽  
Author(s):  
Sophie V. J. van der Horst ◽  
Andrew J. Pitman ◽  
Martin G. De Kauwe ◽  
Anna Ukkola ◽  
Gab Abramowitz ◽  
...  

Abstract. In response to a warming climate, temperature extremes are changing in many regions of the world. Therefore, understanding how the fluxes of sensible heat, latent heat and net ecosystem exchange respond and contribute to these changes is important. We examined 216 sites from the open access Tier 1 FLUXNET2015 and Free-Fair-Use La Thuile datasets, focussing only on observed (non-gap filled) data periods. We examined the availability of sensible heat, latent heat and net ecosystem exchange observations coincident in time with measured temperature for all temperatures, and separately for the upper and lower tail of the temperature distribution and expressed this availability as a measurement ratio. We showed that the measurement ratios for both sensible and latent heat fluxes are generally lower (0.79 and 0.73 respectively) than for temperature, and the measurement ratio of net ecosystem exchange measurements are appreciably lower (0.42). However, sites do exist with a high proportion of measured sensible and latent heat fluxes, mostly over the United States, Europe and Australia. Few sites have a high proportion of measured fluxes at the lower tail of the temperature distribution over very cold regions (e.g. Alaska, Russia) and at the upper tail in many warm regions (e.g. Central America and the majority of the Mediterranean region), and many of the world’s coldest and hottest regions are not represented in the freely available FLUXNET data at all (e.g. India, the Gulf States, Greenland and Antarctica). However, some sites do provide measured fluxes at extreme temperatures suggesting an opportunity for the FLUXNET community to share strategies to increase measurement availability at the tails of the temperature distribution. We also highlight a wide discrepancy between the measurement ratios across FLUXNET sites that is not related to the actual temperature or rainfall regimes at the site, which we cannot explain. Our analysis provides guidance to help select eddy covariance sites for researchers interested in exploring responses to temperature extremes.


Sign in / Sign up

Export Citation Format

Share Document