Neuronal Environment: the Brain Homeostasis in Health and Disease

2002 ◽  
Vol 104 (2) ◽  
pp. 163
Author(s):  
G.W Bruyn
Author(s):  
Danny Galleguillos ◽  
Qian Wang ◽  
Noam Steinberg ◽  
Gaurav Shrivastava ◽  
Kamaldeep Dhami ◽  
...  

ABSTRACTGangliosides are sialic acid-containing glycosphingolipids highly enriched in the brain. Located mainly at the plasma membrane, gangliosides play important roles in signaling and cell-to-cell communication. Lack of gangliosides causes severe early onset neurodegenerative disorders, while more subtle deficits have been reported in Parkinson’s disease and in Huntington’s disease, two misfolded protein diseases with a neuroinflammatory component. On the other hand, administration of ganglioside GM1 provides neuroprotection in both diseases and in several other models of neuronal insult. While most studies have focused on the role of endogenous gangliosides and the effects of exogenously administered GM1 in neurons, their contribution to microglia functions that are affected in neurodegenerative conditions is largely unexplored. Microglia are the immune cells of the brain and play important homeostatic functions in health and disease. In this study, we show that administration of exogenous GM1 exerts a potent anti-inflammatory effect on microglia activated with LPS, IL-1β or upon phagocytosis of latex beads. These effects are partially reproduced by L-t-PDMP, a compound that stimulates the activity of the ganglioside biosynthetic pathway, while inhibition of ganglioside synthesis with GENZ-123346 increases microglial transcriptional response to LPS. We further show that administration of GM1 increases the uptake of apoptotic bodies and latex beads by microglia, as well as microglia migration and chemotaxis in response to ATP. On the contrary, decreasing microglial ganglioside levels results in a partial impairment in both microglial activities. Finally, increasing cellular ganglioside levels results in decreased expression and secretion of microglial brain derived neurotrophic factor (BDNF). Altogether, our data suggest that gangliosides are important modulators of microglia functions that are crucial to healthy brain homeostasis, and reveal that administration of ganglioside GM1 exerts an important anti-inflammatory activity that could be exploited therapeutically.


2021 ◽  
Author(s):  
Daniel S. Gareau ◽  
Matija Snuderl ◽  
Cheddhi Thomas ◽  
Nermin Sumru Bayin ◽  
Dimitris Placantonakis ◽  
...  

Significance: Cerebral vascular reactivity is critical parameters of brain homeostasis in health and disease, but the investigational value of brain oxymetry is diminished by anesthesia and mechanical fixation of the mouse scull. Aim: We needed to reduce the physical restrictivity of hemodynamic spectroscopy to enable cancer and Alzheimers disease (AD) studies in freely-moving mice. Approach: We combined spectroscopy, spectral analysis software and a magnetic, implantable device to measure vascular reactivity in unanesthetized, freely-moving mice. We measured cerebral blood volume fraction (CBVF) and oxygen saturation (SO2). Results: CBVF and SO2 demonstrated delayed cerebrovascular recovery from hypoxia in an orthotopic xenograft glioma model and we found increased CBVF during hypercapnia in a mouse model of AD compared to wild-type littermates. Conclusions: Our optomechanical approach to reproducibly getting light into and out of the brain enabled us to successfully measure CBVF and SO2 during hypercapnia in unanesthetized freely-moving mice. We present hardware and software enabling oximetric analysis of metabolic activity, which provides a safe and reliable method for rapid assessment of vascular reactivity in murine disease models as well as CBVF and SO2.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2021 ◽  
Vol 46 (1) ◽  
pp. 77-87
Author(s):  
Arnaud Tauffenberger ◽  
Pierre J. Magistretti

AbstractCellular homeostasis plays a critical role in how an organism will develop and age. Disruption of this fragile equilibrium is often associated with health degradation and ultimately, death. Reactive oxygen species (ROS) have been closely associated with health decline and neurological disorders, such as Alzheimer’s disease or Parkinson’s disease. ROS were first identified as by-products of the cellular activity, mainly mitochondrial respiration, and their high reactivity is linked to a disruption of macromolecules such as proteins, lipids and DNA. More recent research suggests more complex function of ROS, reaching far beyond the cellular dysfunction. ROS are active actors in most of the signaling cascades involved in cell development, proliferation and survival, constituting important second messengers. In the brain, their impact on neurons and astrocytes has been associated with synaptic plasticity and neuron survival. This review provides an overview of ROS function in cell signaling in the context of aging and degeneration in the brain and guarding the fragile balance between health and disease.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Petra Mohácsik ◽  
Anikó Zeöld ◽  
Antonio C. Bianco ◽  
Balázs Gereben

Thyroid hormone plays a crucial role in the development and function of the nervous system. In order to bind to its nuclear receptor and regulate gene transcription thyroxine needs to be activated in the brain. This activation occurs via conversion of thyroxine to T3, which is catalyzed by the type 2 iodothyronine deiodinase (D2) in glial cells, in astrocytes, and tanycytes in the mediobasal hypothalamus. We discuss how thyroid hormone affects glial cell function followed by an overview on the fine-tuned regulation of T3 generation by D2 in different glial subtypes. Recent evidence on the direct paracrine impact of glial D2 on neuronal gene expression underlines the importance of glial-neuronal interaction in thyroid hormone regulation as a major regulatory pathway in the brain in health and disease.


Sign in / Sign up

Export Citation Format

Share Document