In vitro Effect of Central Nervous System Active Drugs on the ATPase-ADPase Activity and Acetylcholinesterase Activity from Cerebral Cortex of Adult Rats

1998 ◽  
Vol 31 (4) ◽  
pp. 563-567 ◽  
Author(s):  
Claudia Kuplich Barcellos ◽  
Maria Rosa Chitolina Schetinger ◽  
Renato Dutra Dias ◽  
João José Freitas Sarkis
1986 ◽  
Vol 102 (3) ◽  
pp. 803-811 ◽  
Author(s):  
D Giulian ◽  
R L Allen ◽  
T J Baker ◽  
Y Tomozawa

Glia-promoting factors (GPFs) are peptides of the central nervous system which accelerate the growth of specific glial populations in vitro. Although these factors were first discovered in the goldfish visual system (Giulian, D., Y. Tomozawa, H. Hindman, and R. Allen, 1985, Proc. Natl. Acad. Sci. USA., 83:4287-4290), we now report similar peptides are found in mammalian brain. The cerebral cortex of rat contains oligodendroglia-stimulating peptides, GPF1 (15 kD) and GPF3 (6 kD), as well as astroglia-stimulating peptides, GPF2 (9 kD) and GPF4 (3 kD). The concentrations of specific GPFs increase in brain during periods of gliogenesis. For example, GPF1 and GPF3 are found in postnatal rat brain during a peak of oligondendroglial growth while GPF2 and GPF4 are first detected at a time of astroglial proliferation in the embryo. Stab wound injury to the cerebral cortices of rats stimulates astroglial proliferation and induces marked elevations in levels of GPF2 and GPF4. Our findings suggest that two distinct classes of GPFs, those acting upon oligodendroglia and those acting upon astroglia, help to regulate cell growth in the developing and injured central nervous system.


1981 ◽  
Vol 96 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Vangala V. R. Reddy ◽  
Renga Rajan ◽  
Michael J. Daly

Abstract. In vitro incubation of pituitary, hypothalamus and cerebral cortex with [3H]oestrogens revealed that the oestrogens are actively metabolized by these tissues. The covalent binding of oestrone and oestradiol to acid precipitable proteins was observed. Pituitary from male rats exhibited higher covalent binding of oestrogens than females. The 2-hydroxylation was found to be greater than 16-hydroxylation. Furthermore, male pituitary exhibited higher 2-hydroxylation of oestrogens than females. No such sexual dimorphism was observed in 16-hydroxylation. C17-reduction was found to be greater than oxidation in these tissues. Furthermore, the C17-reduction in pituitary and hypothalamus from females was greater than males, which is in contradistinction to protein binding and 2-hydroxylation of oestrogens. In both male and female animals the pituitary was metabolically more active than hypothalamus and cortex. In addition, oestradiol was hydroxylated more than oestrone either at 2- or 16-positions. These results indicate that in central nervous system and pituitary the oestrogens are metabolized preferentially by 2-hydroxylation pathway and it is suggested that the in situ metabolism of oestrogens in neuroendocrine tissues may be important in the control of oestrogen effects on neuroendocrine function and sex behaviour.


1979 ◽  
Vol 57 (9) ◽  
pp. 1040-1042 ◽  
Author(s):  
Phil Skolnick ◽  
Steven M. Paul ◽  
Paul J. Marangos

Levels of [3H] benzodiazepine were measured in rat cerebral cortex following intravenous injection of [3H]diazepam using a dose and time schedule reported to elicit a marked potentiation of the depressant effects of iontophoretically applied 5′-AMP to rat cerebral cortical neurons. The levels of [3H]benzodiazepine obtained strongly suggest (i) that blockade of adenosine uptake as a mechanism for this potentiation is not consistent with the potency of diazepam as an inhibitor of adenosine uptake in vitro, and (ii) that a potentiative interaction of adenosine and diazepam may reflect the binding of these compounds to benzodiazepine receptors.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


2021 ◽  
Vol 22 (4) ◽  
pp. 1725
Author(s):  
Diego Delgado ◽  
Ane Miren Bilbao ◽  
Maider Beitia ◽  
Ane Garate ◽  
Pello Sánchez ◽  
...  

Platelet-rich plasma (PRP) is a biologic therapy that promotes healing responses across multiple medical fields, including the central nervous system (CNS). The efficacy of this therapy depends on several factors such as the donor’s health status and age. This work aims to prove the effect of PRP on cellular models of the CNS, considering the differences between PRP from young and elderly donors. Two different PRP pools were prepared from donors 65–85 and 20–25 years old. The cellular and molecular composition of both PRPs were analyzed. Subsequently, the cellular response was evaluated in CNS in vitro models, studying proliferation, neurogenesis, synaptogenesis, and inflammation. While no differences in the cellular composition of PRPs were found, the molecular composition of the Young PRP showed lower levels of inflammatory molecules such as CCL-11, as well as the presence of other factors not found in Aged PRP (GDF-11). Although both PRPs had effects in terms of reducing neural progenitor cell apoptosis, stabilizing neuronal synapses, and decreasing inflammation in the microglia, the effect of the Young PRP was more pronounced. In conclusion, the molecular composition of the PRP, conditioned by the age of the donors, affects the magnitude of the biological response.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 848
Author(s):  
Luisa Stella Dolci ◽  
Rosaria Carmela Perone ◽  
Roberto Di Gesù ◽  
Mallesh Kurakula ◽  
Chiara Gualandi ◽  
...  

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95–1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells—OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.


2010 ◽  
Vol 30 (5) ◽  
pp. 1031-1043 ◽  
Author(s):  
Longxuan Li ◽  
Jennifer V Welser ◽  
Richard Milner

Cerebral angiogenesis is an important adaptive response to hypoxia. As the αvβ3 integrin is induced on angiogenic vessels in the ischemic central nervous system (CNS), and the suggested angiogenic role for this integrin in other systems, it is important to determine whether the αvβ3 integrin is an important mediator of cerebral angiogenesis. αvβ3 integrin expression was examined in a model of cerebral hypoxia, in which mice were subject to hypoxia (8% O2) for 0, 4, 7, or 14 days. Immunofluorescence and western blot analysis revealed that in the hypoxic CNS, αvβ3 integrin was strongly induced on angiogenic brain endothelial cells (BEC), along with its ligand vitronectin. In the hypoxia model, β3 integrin-null mice showed no obvious defect in cerebral angiogenesis. However, early in the angiogenic process, BEC in these mice showed an increased mitotic index that correlated closely with increased α5 integrin expression. In vitro experiments confirmed α5 integrin upregulation on β3 integrin-null BEC, which also correlated with increased BEC proliferation on fibronectin. These studies confirm hypoxic induction of αvβ3 integrin on angiogenic vessels, but suggest distinct roles for the BEC integrins αvβ3 and α5β1 in cerebral angiogenesis, with αvβ3 having a nonessential role, and α5β1 promoting BEC proliferation.


Sign in / Sign up

Export Citation Format

Share Document