Environmentally friendly sea-water reverse osmosis technology produces drinking water for island inhabitants

2020 ◽  
Vol 2020 (4) ◽  
pp. 6
Author(s):  
Simon Atkinson
2020 ◽  
Vol 9 (3) ◽  
pp. 439-450
Author(s):  
K. Kiswanto ◽  
H. Susanto ◽  
S. Sudarno

Ex-mining pond water is widely used for the daily needs of the people these days, such as bathing, washing, and even drinking. Over time, it turns out that coal mine acid water has polluted the environment. The use of membrane technology to produce water that meets drinking water quality standards by the Minister of Health Regulation No. 492 of 2010 can be a solution to this problem. The NF270 membrane is a membrane process between reverse osmosis and ultrafiltration, which has a lower flux and operating pressure below 0.2-1.53 Mpa compared to reverse osmosis. Membrane NF270 is used for the reclamation of wastewater, water purification and softening, seawater desalination, and others. Its high rejection of organic molecules with a molecular weight of 200-2000 Da ions and multivalent can remove suspended solids, natural organic matter, bacteria, viruses, salts, and divalent ions contained in water, including coal mine acid water. The purpose of treating acid mine drainage with the NF270 membrane is to remove COD, TSS, TDS, and Fe metals. The NF270 membrane was used in this study to treat the coal mine acid water of PT. Bukit Asam. The performance of the NF270 process was assessed from the effect of pressure (4, 5, and 6 bar) on the flux and rejection rate of each parameter in a single solution, mixed and aqueous coal mine acid solution. The optimum pressure of the NF270 membrane for all parameters was 6 bar. This optimum pressure was then used to compare the phenomenon of flux that occurred and the level of rejection produced in the original sample of coal mine acid water. In the original coal mine acid water, there was a significant decrease in flux due to fouling deposition on the membrane surface. This phenomenon of decreasing flux was caused by fouling and polarization concentration. The rejection rates produced for the parameters of COD, TSS, TDS, and Fe with NF270 membranes were 56.4-93.1%; 78.5-100%; 43-69.3%; 67-100% respectively. Treated coal mine acid water using NF270 membrane technology can be used as drinking water that meets the standards of the Indonesian Ministry of Health Regulation. Thus, NF270 membrane technology can be used to process coal mine acid water into environmentally friendly drinking water.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Arie Herlambang

Pangkajene archipelago, is archipelago comprising 117 islands scattered in the West Coast District Pangkajene. The islands were inhabited by populations ranging from 10 to 250 heads of families. Most of the population livelihood as a fisherman. To support the daily basic needs are still supplied from the mainland, including the need for clean water. Community water needs during this time a lot depends on rain water that collected or from shallow groundwater. In line with population growth, water demand increases, so frequent water shortages, especially during the dry season. Sea water treatment technology with reverse osmosis systems is an alternative to the settlement of water shortage on the island, but because the number of islands many, it will be difficult to meet the needs of water in a short time. Therefore chosen the middle position of the three islands (Cakdi Saroppe Island, Island and Island Sanane view) as a distribution center. Installed capacity for each of the islands is 10 m3/day, which can serve to the needs of drinking water a thousand people. Water treatment technology with reverse osmosis pretreatment consist of the form of multi-media filter consisting of silica sand, zeolite, and activated carbon, followed by cartride filter and a reverse osmosis membrane. Construction of the water treatment unit involves people since it began surveying best location, construction, training and initial operation. Water that has been processed can drink for everyday purposes, therefore, to support the operations of the water is sold to the public for replacement of operational money. The biggest cost needed to produce water is the cost of fuel. By managing the sale of water expected operating costs can be met and comunity get drinking water at an affordable price.Keyword : dringking water, reverse osmosis, society engangement.


2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 377
Author(s):  
Federico Leon ◽  
Alejandro Ramos-Martin ◽  
Sebastian Ovidio Perez-Baez

The water situation in the Canary Islands has been a historical problem that has been sought to be solved in various ways. After years of work, efforts have focused on desalination of seawater to provide safe water mainly to citizens, agriculture, and tourism. Due to the high demand in the Islands, the Canary Islands was a pioneering place in the world in desalination issues, allowing the improvement of the techniques and materials used. There are a wide variety of technologies for desalination water, but nowadays the most used is reverse osmosis. Desalination has a negative part, the energy costs of producing desalinated water are high. To this we add the peculiarities of the electricity generation system in the Canary Islands, which generates more emissions per unit of energy produced compared to the peninsular generation system. In this study we have selected a desalination plant located on the island of Tenerife, specifically in the municipality of Granadilla de Abona, and once its technical characteristics have been known, the ecological footprint has been calculated. To do this we have had to perform some calculations such as the capacity to fix carbon dioxide per hectare in the Canary Islands, as well as the total calculation of the emissions produced in the generation of energy to feed the desalination plant.


2021 ◽  
Vol 13 (2) ◽  
pp. 883
Author(s):  
Changjuan Dong ◽  
Xiaomei Wu ◽  
Zhanyi Gao ◽  
Peiling Yang ◽  
Mohd Yawar Ali Khan

Inefficient and non-environmentally friendly absorbent production can lead to much resource waste and go against low carbon and sustainable development. A novel and efficient Mg-Fe-Ce (MFC) complex metal oxide absorbent of fluoride ion (F−) removal was proposed for safe, environmentally friendly, and sustainable drinking water management. A series of optimization and preparation processes for the adsorbent and batch experiments (e.g., effects of solution pH, adsorption kinetics, adsorption isotherms, effects of coexisting anions, as well as surface properties tests) were carried out to analyze the characteristics of the adsorbent. The results indicated that optimum removal of F− occurred in a pH range of 4–5.5, and higher adsorption performances also happened under neutral pH conditions. The kinetic data under 10 and 50 mg·g−1 were found to be suitable for the pseudo-second-order adsorption rate model, and the two-site Langmuir model was ideal for adsorption isotherm data as compared to the one-site Langmuir model. According to the two-site Langmuir model, the maximum adsorption capacity calculated at pH 7.0 ± 0.2 was 204 mg·g−1. The adsorption of F− was not affected by the presence of sulfate (SO42−), nitrate (NO3−), and chloride (Cl−), which was suitable for practical applications in drinking water with high F− concentration. The MFC adsorbent has an amorphous structure, and there was an exchange reaction between OH− and F−. The novel MFC adsorbent was proven to have higher efficiency, better economy, and environmental sustainability, and be more environmentally friendly.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Latifah Abdul Ghani ◽  
Nora’aini Ali ◽  
Ilyanni Syazira Nazaran ◽  
Marlia M. Hanafiah

Seawater desalination is an alternative technology to provide safe drinking water and to solve water issues in an area having low water quality and limited drinking water supply. Currently, reverse osmosis (RO) is commonly used in the desalination technology and experiencing significant growth. The aim of this study was to analyze the environmental impacts of the seawater reverse osmosis (SWRO) plant installed in Kampung Pantai Senok, Kelantan, as this plant was the first installed in Malaysia. The software SimaPro 8.5 together with the ReCiPe 2016 database were used as tools to evaluate the life cycle assessment (LCA) of the SWRO plant. The results showed that the impact of global warming (3.90 kg CO2 eq/year) was the highest, followed by terrestrial ecotoxicity (1.62 kg 1,4-DCB/year) and fossil resource scarcity (1.29 kg oil eq/year). The impact of global warming was caused by the natural gas used to generate the electricity, mainly during the RO process. Reducing the environmental impact can be effectively achieved by decreasing the electricity usage for the seawater desalination process. As a suggestion, electricity generation can be overcome by using a high-flux membrane with other suitable renewable energy for the plant such as solar and wind energy.


Author(s):  
OO Sinitsyna ◽  
VV Turbinsky ◽  
TM Ryashentseva ◽  
EP Lavrik

Background. Uneven distribution of fresh water sources on the land surface encourages a search for effective techniques of potable water preparation by desalination of seawater. Hygienic issues of such desalination methods as distillation, reverse osmosis, electrodialysis, and ion exchange have been investigated by now and appropriate limitations, requirements, and additional measures to ensure safety of desalinated drinking water have been established. Objective. To summarize and systematize the results of studying characteristics of various methods of seawater desalination for its further use for drinking and household purposes. Materials and methods. We conducted a systematic review of studies published in Russian and in English, found in the PubMed and Web of Science databases, and selected 40 literary sources containing an empirical assessment of effectiveness of seawater desalination and preparation of drinking water. We also scrutinized regulatory documents and guidelines of domestic sanitary legislation. The research results were systematized by the main desalination methods. Results and discussion. We established that the use of seawater for the preparation of fresh water for drinking and household purposes is becoming increasingly widespread around the world. Drinking water obtained from seawater, in all cases, requires additional treatment and measures to optimize its mineral composition and protect against microorganisms. Conclusion. The main challenges of ensuring sanitary and epidemiological wellbeing of the population when using desalinated seawater for drinking and household purposes include selection of a source, arrangement of sites of water intake properly protected from natural and man-made pollution, substantiation of techniques and modes of preliminary preparation of source seawater adequate to its composition, basic desalination, ensuring safety of products of destruction and migration of toxic substances from reagents and materials of desalination plants, additional conditioning with the necessary elements and disinfection of the prepared water, as well as environmental protection from desalination waste.


Sign in / Sign up

Export Citation Format

Share Document