scholarly journals Treatment of Coal Mine Acid Water Using Nf270 Membrane as Environmentally Friendly Technology

2020 ◽  
Vol 9 (3) ◽  
pp. 439-450
Author(s):  
K. Kiswanto ◽  
H. Susanto ◽  
S. Sudarno

Ex-mining pond water is widely used for the daily needs of the people these days, such as bathing, washing, and even drinking. Over time, it turns out that coal mine acid water has polluted the environment. The use of membrane technology to produce water that meets drinking water quality standards by the Minister of Health Regulation No. 492 of 2010 can be a solution to this problem. The NF270 membrane is a membrane process between reverse osmosis and ultrafiltration, which has a lower flux and operating pressure below 0.2-1.53 Mpa compared to reverse osmosis. Membrane NF270 is used for the reclamation of wastewater, water purification and softening, seawater desalination, and others. Its high rejection of organic molecules with a molecular weight of 200-2000 Da ions and multivalent can remove suspended solids, natural organic matter, bacteria, viruses, salts, and divalent ions contained in water, including coal mine acid water. The purpose of treating acid mine drainage with the NF270 membrane is to remove COD, TSS, TDS, and Fe metals. The NF270 membrane was used in this study to treat the coal mine acid water of PT. Bukit Asam. The performance of the NF270 process was assessed from the effect of pressure (4, 5, and 6 bar) on the flux and rejection rate of each parameter in a single solution, mixed and aqueous coal mine acid solution. The optimum pressure of the NF270 membrane for all parameters was 6 bar. This optimum pressure was then used to compare the phenomenon of flux that occurred and the level of rejection produced in the original sample of coal mine acid water. In the original coal mine acid water, there was a significant decrease in flux due to fouling deposition on the membrane surface. This phenomenon of decreasing flux was caused by fouling and polarization concentration. The rejection rates produced for the parameters of COD, TSS, TDS, and Fe with NF270 membranes were 56.4-93.1%; 78.5-100%; 43-69.3%; 67-100% respectively. Treated coal mine acid water using NF270 membrane technology can be used as drinking water that meets the standards of the Indonesian Ministry of Health Regulation. Thus, NF270 membrane technology can be used to process coal mine acid water into environmentally friendly drinking water.

2018 ◽  
Vol 73 ◽  
pp. 05030
Author(s):  
Kiswanto ◽  
Heru Susanto ◽  
Sudarno

This study aims to determine the characteristics of acidic water derived from void coal mine by taking samples from voids located in South Kalimantan. Method used in this research was field work and laboratory work. The result of measurement of acid characterization of coal mine acid was analyzed to have the highest pH value of 4.01, the highest temperature was 33.9 oC, the highest Color was 3.01 NTU, the highest COD was 56.50 ppm, the highest BOD was 20,34 ppm , The highest DHL of 1 us, the highest TSS of 652.67 ppm, the highest Fe of 9.46 ppm, the highest Mn of 1.72 ppm and the Cd content is still below the defined standard of less than 0.01 ppm. Decree of the State Minister of Environment No. 113 of 2003 on Liquid Waste Quality Standards for Coal Mining.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Arie Herlambang

Pangkajene archipelago, is archipelago comprising 117 islands scattered in the West Coast District Pangkajene. The islands were inhabited by populations ranging from 10 to 250 heads of families. Most of the population livelihood as a fisherman. To support the daily basic needs are still supplied from the mainland, including the need for clean water. Community water needs during this time a lot depends on rain water that collected or from shallow groundwater. In line with population growth, water demand increases, so frequent water shortages, especially during the dry season. Sea water treatment technology with reverse osmosis systems is an alternative to the settlement of water shortage on the island, but because the number of islands many, it will be difficult to meet the needs of water in a short time. Therefore chosen the middle position of the three islands (Cakdi Saroppe Island, Island and Island Sanane view) as a distribution center. Installed capacity for each of the islands is 10 m3/day, which can serve to the needs of drinking water a thousand people. Water treatment technology with reverse osmosis pretreatment consist of the form of multi-media filter consisting of silica sand, zeolite, and activated carbon, followed by cartride filter and a reverse osmosis membrane. Construction of the water treatment unit involves people since it began surveying best location, construction, training and initial operation. Water that has been processed can drink for everyday purposes, therefore, to support the operations of the water is sold to the public for replacement of operational money. The biggest cost needed to produce water is the cost of fuel. By managing the sale of water expected operating costs can be met and comunity get drinking water at an affordable price.Keyword : dringking water, reverse osmosis, society engangement.


2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.


Author(s):  
Leonid S. Bobe ◽  
Nikolay A. Salnikov

Analysis and calculation have been conducted of the process of low-pressure reverse osmosis in the membrane apparatus of the system for recycling hygiene water for the space station. The paper describes the physics of the reverse osmosis treatment and determines the motive force of the process, which is the difference of effective pressures (operating pressure minus osmotic pressure) in the solution near the surface of the membrane and in the purified water. It is demonstrated that the membrane scrubbing action is accompanied by diffusion outflow of the cleaning agent components away from the membrane. The mass transfer coefficient and the difference of concentrations (and, accordingly, the difference of osmotic pressures) in the boundary layer of the pressure channel can be determined using an extended analogy between mass transfer and heat transfer. A procedure has been proposed and proven in an experiment for calculating the throughput of a reverse osmosis apparatus purifying the hygiene water obtained through the use of a cleaning agent used in sanitation and housekeeping procedures on Earth. Key words: life support system, hygiene water, water processing, low-pressure reverse osmosis, space station.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Thomas J. Ainscough ◽  
Darren L. Oatley-Radcliffe ◽  
Andrew R. Barron

Groundwater contamination by chlorinated hydrocarbons represents a particularly difficult separation to achieve and very little is published on the subject. In this paper, we explore the potential for the removal of chlorinated volatile and non-volatile organics from a site in Bedfordshire UK. The compounds of interest include trichloroethylene (TCE), tetrachloroethylene (PCE), cis-1,2-dichloroethylene (DCE), 2,2-dichloropropane (DCP) and vinyl chloride (VC). The separations were first tested in the laboratory. Microfiltration membranes were of no use in this separation. Nanofiltration membranes performed well and rejections of 70–93% were observed for synthetic solutions and up to 100% for real groundwater samples. Site trials were limited by space and power availability, which resulted in a maximum operating pressure of only 3 bar. Under these conditions, the nanofiltration membrane removed organic materials, but failed to remove VOCs to any significant extent. Initial results with a reverse osmosis membrane were positive, with 93% removal of the VOCs. However, subsequent samples taken demonstrated little removal. Several hypotheses were presented to explain this behavior and the most likely cause of the issue was fouling leading to adsorption of the VOCs onto the membrane and allowing passage through the membrane matrix.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1094
Author(s):  
Emily S. Bailey ◽  
Nikki Beetsch ◽  
Douglas A. Wait ◽  
Hemali H. Oza ◽  
Nirmala Ronnie ◽  
...  

It is estimated that 780 million people do not have access to improved drinking water sources and approximately 2 billion people use fecally contaminated drinking water. Effective point-of-use water treatment systems (POU) can provide water with sufficiently reduced concentrations of pathogenic enteric microorganisms to not pose significant health risks to consumers. Household water treatment (HWT) systems utilize various technologies that physically remove and/or inactivate pathogens. A limited number of governmental and other institutional entities have developed testing protocols to evaluate the performance of POU water treatment systems. Such testing protocols are essential to documenting effective performance because inferior and ineffective POU treatment technologies are thought to be in widespread use. This critical review examines specific practices, procedures and specification of widely available POU system evaluation protocols. Testing protocols should provide standardized and detailed instructions yet be sufficiently flexible to deal with different treatment technologies, test microbe priorities and choices, testing facility capabilities and public health needs. Appropriate infectivity or culture assays should be used to quantify test enteric bacteria, viruses and protozoan parasites, or other appropriate surrogates or substitutes for them, although processes based on physical removal can be tested by methods that detect microbes as particles. Recommendations include further research of stock microbe production and handling methods to consistently yield test microbes in a realistic state of aggregation and, in the case of bacteria, appropriately physiologically stressed. Bacterial quantification methods should address the phenomenon of bacterial injury and repair in order to maximally recover those that are culturable and potentially infectious. It is only with harmonized national and international testing protocols and performance targets that independent and unbiased testing can be done to assure consumers that POU treatment technologies are able to produce water of high microbial quality and low health risk.


Author(s):  
Mengying Jiang ◽  
Li-Ye Chen ◽  
Qian Zou ◽  
Siwei Xiong ◽  
Peigen Fu ◽  
...  

Reverse osmosis (RO) membrane technology, as an effective and eco-friendly method, has been widely used for seawater desalination and sewage treatment. However, RO membranes inevitably suffer serious organic and biological...


Sign in / Sign up

Export Citation Format

Share Document