X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane

Author(s):  
B PARK
2004 ◽  
Vol 27 (4) ◽  
pp. 353-363 ◽  
Author(s):  
Byung-Dae Park ◽  
Seung Gon Wi ◽  
Kwang Ho Lee ◽  
Adya P. Singh ◽  
Tae-Ho Yoon ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


2019 ◽  
Vol 55 (2) ◽  
pp. 180-184
Author(s):  
A. Yu. Teterin ◽  
Yu. A. Teterin ◽  
K. Yu. Maslakov ◽  
E. N. Murav’ev ◽  
V. F. Solinov ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1440 ◽  
Author(s):  
Sanjeev K. Sharma ◽  
Ashish R. Sharma ◽  
Sudheer D. V. N. Pamidimarri ◽  
Jyotshana Gaur ◽  
Beer Pal Singh ◽  
...  

Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp peaks. Micrographs of the b-SiO2 revealed that sticky RHA synthesized SiO2 nanopowder (S1) had clustered spherical nanoparticles (70 nm diameter), while b-SiO2 nanopowder synthesized from red RHA (S2) and b-SiO2 nanopowder synthesized from brown RHA (S3) were purely spherical (20 nm and 10 nm diameter, respectively). Compared to the S1 (11.36 m2g−1) and S2 (234.93 m2g−1) nanopowders, the S3 nanopowders showed the highest surface area (280.16 m2g−1) due to the small particle size and high porosity. The core level of the X-ray photoelectron spectroscopy (XPS) spectra showed that Si was constituted by two components, Si 2p (102.2 eV) and Si 2s (153.8 eV), while Oxygen 1s was observed at 531.8 eV, confirming the formation of SiO2. The anti-bacterial activity of the b-SiO2 nanopowders was investigated using both gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) microorganisms. Compared to S2 and S3 silica nanopowders, S1 demonstrated enhanced antibacterial activity. This study signifies the medical, biomedical, clinical, and biological importance and application of RHA-mediated synthesized b-SiO2.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2817 ◽  
Author(s):  
Feng Zhan ◽  
Lei Xiong ◽  
Fang Liu ◽  
Chenying Li

In this study, we proposed a novel and facile method to modify the surface of TiO2 nanoparticles and investigated the influence of the surface-modified TiO2 nanoparticles as an additive in a polyurethane (PU) coating. The hyperbranched polymers (HBP) were grafted on the surface of TiO2 nanoparticles via the thiol-yne click chemistry to reduce the aggregation of nanoparticles and increase the interaction between TiO2 and polymer matrices. The grafting of HBP on the TiO2 nanoparticles surface was investigated by means of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) and thermogravimetry analysis (TGA). The thermal and mechanical properties of nanocomposite coatings containing various amounts of TiO2 nanoparticles were measured by dynamic mechanical thermal (DMTA) and tensile strength measurement. Moreover, the surface structure and properties of the newly prepared nanocomposite coatings were examined. The experimental results demonstrate that the incorporation of the surface-modified TiO2 nanoparticles can improve the mechanical and thermal properties of nanocomposite coatings. The results also reveal that the surface modification of TiO2 with the HBP chains improves the nanoparticle dispersion, and the coating surface shows a lotus leaf-like microstructure. Thus, the functional nanocomposite coatings exhibit superhydrophobic properties, good photocatalytic depollution performance, and high stripping resistance.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3605-3610 ◽  
Author(s):  
MASAYOSHI MIZUTANI ◽  
JUN KOMOTORI ◽  
KAZUTOSHI KATAHIRA ◽  
HITOSHI OHMORI

The biocompatibility of titanium implants with different surface properties is investigated. We prepared three types of specimens, one ground by the newly developed ELID grinding system, another ground by conventional ELID grinding, and the other polished by SiO 2 powder. These surfaces were characterized and, the number of cell and cytotoxicity in in-vitro were measured. Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscope (TEM) revealed that the modified ELID system can create a significantly thick oxide layer and a diffused oxide layer, and also can control the thickness of a modified layer. The results of cell number and cytotoxicity showed that the sample ground by the modified system had the highest biocompatibility. This may have been caused by improvement of chemical properties due to a surface modified layer. The above results suggest that this newly developed ELID grinding system can create the desirable surface properties. Consequently, this system appears to offer significant future promise for use in biomaterials and other engineering components.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Young-Pil Yun ◽  
Jae Yong Lee ◽  
Won Jae Jeong ◽  
Kyeongsoon Park ◽  
Hak-Jun Kim ◽  
...  

The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL) fibers modified using theγ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc) was grafted onto the PCL fibers by theγ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL). PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP) activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells.


2018 ◽  
Vol 106 (4) ◽  
pp. 291-300
Author(s):  
Nidia García-González ◽  
Eduardo Ordoñez-Regil ◽  
María Guadalupe Almazán-Torres ◽  
Eric Simoni

AbstractThe interaction of salicylic acid with zirconium diphosphate surface and its reactivity toward uranium (VI) was investigated. The interaction of salicylic acid with zirconium diphosphate was firstly studied using several analytical techniques including atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The sorption of uranium (VI) onto surface-modified zirconium diphosphate was evaluated by the classical batch method at room temperature. This study showed that the uranium (VI) sorption onto zirconium diphosphate is influenced by the presence of salicylic acid. A fluorescence spectroscopy study revealed the presence of a uranyl specie onto the modified solid surface. The spectroscopy results were then used to restrain the modeling of experimental sorption data, which are interpreted in terms of a constant capacitance model using the FITEQL code. The results indicated that interaction between the uranium (VI) and the surface of zirconium diphosphate modified with salicylic acid leads to the formation of a ternary surface complex.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 711 ◽  
Author(s):  
Yingying Wen ◽  
Yong Ji ◽  
Shifeng Zhang ◽  
Jie Zhang ◽  
Gaotang Cai

The fabrication of functional lignocellulose-based materials has drawn considerable attention because it acts as a green separation/absorption material owing to its multi-porous mesostructure. In this study, a surface functionalized lignocellulose-based adsorbent for the highly efficient capture of Cd(II) ions was prepared through facile in situ co-deposition of wood waste-derived saw powder (SP) in the presence of tannic acid (TA) and aminopropyltriethoxysilane (APTES) mixed aqueous solution. The SP was first modified using TA-APTES coating to synthesize the functional SP substrate (SP-(TA-APTES)). The SP-(TA-APTES) hybrids served as reactive platforms, which enabled further decoration with amino-rich polyethylenimine (PEI) due to the outstanding secondary reactions of the TA-APTES layer. The surface morphology of the resulting SP-(TA-APTES)-PEI (SP-TAPI) composites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Significantly, the combined advantages of the lignocellulosic skeleton, the layer-particle structure, and the hybrid coating contributed to the enhanced adsorption capacity of Cd(II) (up to 22.66 mg/g at pH = 5.0). This removal capacity was higher than that of most reported agricultural waste-based or lignocellulose-based materials. The Cd(II) adsorption mechanism of the surface-modified SP-TAPI composites was studied in detail. These results provide new insights into the high value-added utilization of agricultural waste for water purification applications.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Hongzhou Dong ◽  
Sannakaisa Virtanen

Zinc-based alloys are emerging as an alternative to magnesium- and iron-based alloys for biodegradable implant applications, due to their appropriate corrosion performance and biocompatibility. However, localized corrosion occurring on the zinc surface, which is generally associated with restricted mass transport at specific surface sites, such as in confined crevices, declines mechanical strength and can lead to the failure of implant materials. In order to improve corrosion behavior and bioactivity, we explore the effect of a ZnO microsheet coating fabricated on pure Zn via anodic oxidization. Samples were characterized with Scanning Electron Microscope (SEM) (including Energy Dispersive Spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD)). The microstructured surface consists of parallel Zn trenches on the bottom and ZnO/Zn3O(SO4)2 sheets on the top. This layer shows favorable Ca-phosphate precipitation as well as bovine serum albumin (BSA) adsorption properties. Electrochemical experiments indicate an increased corrosion resistance of surface-modified Zn by the presence of BSA in simulated body fluid. Most noteworthily, localized corrosion that has been previously observed for pure Zn in BSA-containing electrolytes does not occur on the Zn/ZnO-coated surface.


Sign in / Sign up

Export Citation Format

Share Document