scholarly journals Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by theγ-Ray Irradiation Technique

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Young-Pil Yun ◽  
Jae Yong Lee ◽  
Won Jae Jeong ◽  
Kyeongsoon Park ◽  
Hak-Jun Kim ◽  
...  

The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL) fibers modified using theγ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc) was grafted onto the PCL fibers by theγ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL). PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP) activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells.

2012 ◽  
Vol 1403 ◽  
Author(s):  
Wei Gao ◽  
Yakai Feng ◽  
Jian Lu ◽  
Jintang Guo

ABSTRACTPhosphorylcholine glyceraldehyde (PCGA) was used as a phosphorylcholine (PC) group containing compound to graft onto the surface of polycarbonateurethane (PCU) film using 1,6-hexanediamine (HDA) or α,ω-diamino-poly(ethylene glycol) (APEG, Mn = 200) as a spacer, in order to introduce biomimetic structure onto the polymer surface. X-ray photoelectron spectroscopy (XPS) analysis shows that PCGA has been covalently linked to the PCU surface. Water contact angle test suggests that the surface hydrophilicity has been improved after PCGA is grafted onto the surface of PCU film. Scanning electron microscope (SEM) observation of the modified PCU films after contacting with plasma-rich plasma demonstrates that platelets rarely adhere but a large number of platelets adhere to the original PCU surface. The hemocompatibility of the PC modified PCU film has been improved obviously after grafting with PCGA with PEG spacer.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 771 ◽  
Author(s):  
Qiang Xie ◽  
Tianhui Hao ◽  
Jifeng Zhang ◽  
Chao Wang ◽  
Rongkui Zhang ◽  
...  

Coatings with anti-icing performance possess hydrophobicity and low ice adhesion strength, which delay ice formation and make ice removal easier. In this paper, the anti-icing performance of nano/microsilica particle-filled amino-terminated PDMS (A-PDMS)-modified epoxy coatings was investigated. In the process, the influence of the addition of A-PDMS on the hydrophobicity and ice adhesion strength was investigated. Furthermore, the influences of various weight ratios of nanosilica/microsilica (Rn/m) on the hydrophobicity and ice adhesion strength of the coating were investigated. Hydrophobicity was evaluated by contact angle (CA) and contact angle hysteresis (CAH) tests. Ice adhesion strength was measured by a centrifugal adhesion test. The addition of A-PDMS markedly increased hydrophobicity and decreased ice adhesion. The size combination of particles obviously affects hydrophobicity but has little effect on ice adhesion. Finally, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to reveal the anti-icing mechanism of the coatings.


2021 ◽  
Author(s):  
TianXia LIU ◽  
jian Qin ◽  
Jian Wang ◽  
jing Li

Abstract Purpose To study the effect of oleic acid surface modified RGO/MoS2 composite lubricating additives on the friction and wear properties of 10# White Oil (10# WO). Method The influence of different concentrations of reduction graphene oxide/molybdenum disulfide (RGO-MoS2) and oleic acid surface modified reduction graphene oxide/molybdenum disulfide (OA-RGO-MoS2) on the lubricating properties in 10# WO was investigated by using a four-ball long-term friction and wear tester. The microscopic morphology, lattice structure, composition and element valence of the prepared material were characterized by scanning electron microscope, Raman spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, element analyzer and other instruments. The diameter, structure, morphology, composition and element valence state of the wear scar were obtained by multifunctional universal tool microscope, scanning electron microscope and X-ray photoelectron spectroscopy. Result In the RGO-MoS2 white oil system, when 0.4 wt% RGO-MoS2 was added, the anti-friction effect was the best, and the average friction coefficient (AFC) reduced by 21.8%. When 0.2 wt% RGO-MoS2 was added, the anti-wear effect was the optimal, and the average wear scar diameter (AWSD) decreased by 12.4%. In the OA-RGO-MoS2 white oil system, when 0.2 wt% OA-RGO-MoS2 was added, the anti-friction and anti-wear effects were the best, and the AFC reduced by 33.3%, and AWSD reduced by 14.1%. Conclusion Compared with RGO-MoS2, OA-RGO-MoS2 has a higher degree of graphitization, larger interlayer spacing, lower degree of layered accumulation, higher MoS2 load, and weaker thermal stability. Both lubricating additives have good anti-friction and anti-wear effects at low concentrations, and the anti-friction and anti-wear effects are more prominent after being modified by oleic acid. Analysis of friction mechanism shows that a lubricating protective film containing iron, oxygen, molybdenum, carbon, and sulfur is formed through adsorption or tribochemical reaction during the friction process, which improves the lubrication state and plays a role in reducing friction and anti-wear.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Patrick Chapon ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
...  

In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tae Hyeong Kim ◽  
Hyeji Kim ◽  
Hyo Jun Jang ◽  
Nara Lee ◽  
Kwang Hyun Nam ◽  
...  

AbstractIn the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.


2011 ◽  
Vol 415-417 ◽  
pp. 642-647
Author(s):  
En Zhong Li ◽  
Da Xiang Yang ◽  
Wei Ling Guo ◽  
Hai Dou Wang ◽  
Bin Shi Xu

Ultrafine fibers were electrospun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers. The effects of solution concentration, applied voltage and flow rate on preparation and morphologies of electrospun PAN fibers were investigated. Morphologies of the green fibers, stabilized fibers and carbonized fibers were compared by scanning electron microscope (SEM). The diameter of PAN nanofibers is about 450nm and the distribution of diameter is well-proportioned. Characterization of the elements changes of fibers were performed by X-ray photoelectron spectroscopy (XPS).


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2019 ◽  
Vol 55 (2) ◽  
pp. 180-184
Author(s):  
A. Yu. Teterin ◽  
Yu. A. Teterin ◽  
K. Yu. Maslakov ◽  
E. N. Murav’ev ◽  
V. F. Solinov ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1458 ◽  
Author(s):  
Leon-Ramos ◽  
Diosdado-Cano ◽  
López-Santos ◽  
Barranco ◽  
Torres-Lagares ◽  
...  

Aim: Titanium implants are commonly used as replacement therapy for lost teeth and much current research is focusing on the improvement of the chemical and physical properties of their surfaces in order to improve the osseointegration process. TiO2, when it is deposited in the form of pillar array nanometric structures, has photocatalytic properties and wet surface control, which, together with UV irradiation, provide it with superhydrophilic surfaces, which may be of interest for improving cell adhesion on the peri-implant surface. In this article, we address the influence of this type of surface treatment on type IV and type V titanium discs on their surface energy and cell growth on them. Materials and methods: Samples from titanium rods used for making dental implants were used. There were two types of samples: grade IV and grade V. In turn, within each grade, two types of samples were differentiated: untreated and treated with sand blasting and subjected to double acid etching. Synthesis of the film consisting of titanium oxide pillar array structures was carried out using plasma-enhanced chemical vapor deposition equipment. The plasma was generated in a quartz vessel by an external SLAN-1 microwave source with a frequency of 2.45 GHz. Five specimens from each group were used (40 discs in total). On the surfaces to be studied, the following determinations were carried out: (a) X-ray photoelectron spectroscopy, (b) scanning electron microscopy, (c) energy dispersive X-ray spectroscopy, (d) profilometry, (e) contact angle measurement or surface wettability, (f) progression of contact angle on applying ultraviolet irradiation, and (g) a biocompatibility test and cytotoxicity with cell cultures. Results: The application of ultraviolet light decreased the hydrophobicity of all the surfaces studied, although it did so to a greater extent on the surfaces with the studied modification applied, this being more evident in samples manufactured in grade V titanium. In samples made in grade IV titanium, this difference was less evident, and even in the sample manufactured with grade IV and SLA treatment, the application of the nanometric modification of the surface made the surface optically less active. Regarding cell growth, all the surfaces studied, grouped in relation to the presence or not of the nanometric treatment, showed similar growth. Conclusions. Treatment of titanium oxide surfaces with ultraviolet irradiation made them change temporarily into superhydrophilic ones, which confirms that their biocompatibility could be improved in this way, or at least be maintained.


Sign in / Sign up

Export Citation Format

Share Document