Recent developments in industrial applications of elastic scatter X-ray inspection

1999 ◽  
Vol 56 (1-2) ◽  
pp. 213-227 ◽  
Author(s):  
R.D Luggar ◽  
W.B Gilboy
Author(s):  
D.L. Gerrard

One of the major advantages of Raman spectroscopy for the industrial analyst is its capability for providing spatially resolved molecular information on a wide range of inorganic materials. Although the technique of Raman microscopy has been available for nearly twenty years its value in industrial analysis is still not widely appreciated. Recent developments in the use of near infrared excitation with Fourier transform spectrometers and of microline focus systems with charge-coupled devices as detectors have greatly expanded the value of the technique and should help it to appeal to a wider audience. Raman microscopy provides much valuable information in its own right and can often be used to solve analytical problems without reference to any other technique. However, it is usually of greatest value to the industrial analyst when used in conjunction with other microspectroscopy techniques such as scanning electron microscopy/energy dispersive X-ray analysis, infrared microscopy, proton-induced X-ray emission, laser ionisation mass analysis and laser scanning optical microscopy.


2006 ◽  
Vol 21 (2) ◽  
pp. 178-178
Author(s):  
N. Gao ◽  
I. Ponomarev ◽  
Y. He

Author(s):  
Yusuke Nakatake ◽  
Makoto Okabe ◽  
Shota Sato

Abstract In this paper, we carried out PIND (Particle Impact Noise Detection) test and X-ray inspection of a transistor in a TO-18 package for commercial and industrial applications. From our evaluation results, we explain the validity of the PIND test by comparing PIND test and X-ray inspection results. We make clear that PIND test is able to detect internal foreign material that may be transparent to X-ray inspection. In addition, we report analysis results of internal foreign materials from defective devices. This matter suggests that a problem is contamination control in the manufacturing process, most likely the sealing process.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


2003 ◽  
Vol 11 (2) ◽  
pp. 115-122
Author(s):  
Kálmán Marossy ◽  
Pál Bárczy

Blends of high density polyethylene (HDPE) and chlorinated polyethylene (CPE) have been tested across the whole concentration range. Polyethylene is used to modify the properties of CPE in the elastomer industry, but modification of the properties of polyethylene with CPE is still not usual. Conventional mechanical tests and dynamic mechanical tests were carried out. The blends were found to be multiphase systems of excellent technological compatibility. Between 10 and 15% by weight CPE increased the modulus of polyethylene. X-ray scattering studies showed that the blends contained structural units not present either in the polyethylene or in the CPE. The blends were melt processable and may have industrial applications, too.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


Sign in / Sign up

Export Citation Format

Share Document