Chapter 4 Eruption column physics

1998 ◽  
Vol 4 ◽  
pp. 91-138 ◽  
Author(s):  
G VALENTINE
Keyword(s):  
1980 ◽  
Vol 117 (5) ◽  
pp. 425-436 ◽  
Author(s):  
R. S. J. Sparks ◽  
T. C. Huang

SummaryMany volcanic ash layers preserved in deep-sea sediments are the products of large magnitude ignimbrite eruptions. The characteristics of such co-ignimbrite ash-fall deposits are illustrated by two layers from the Eastern Mediterranean: the Minoan ash, Santorini, and the Campanian ash, Italy. These layers are divisible into a coarse lower unit and a fine upper unit in proximal cores. Both layers also show striking bimodal grain size distributions in more distal cores. The coarser mode decreases in median diameter with distance from source whereas the finer mode shows no lateral variation. These features are interpreted in terms of a model for ignimbrite formation by eruption column collapse. Comparable volumes of ignimbrite and associated air-fall ejecta are produced.


2021 ◽  
Author(s):  
Leonardo Mingari ◽  
Andrew Prata ◽  
Federica Pardini

<p>Modelling atmospheric dispersion and deposition of volcanic ash is becoming increasingly valuable for understanding the potential impacts of explosive volcanic eruptions on infrastructures, air quality and aviation. The generation of high-resolution forecasts depends on the accuracy and reliability of the input data for models. Uncertainties in key parameters such as eruption column height injection, physical properties of particles or meteorological fields, represent a major source of error in forecasting airborne volcanic ash. The availability of nearly real time geostationary satellite observations with high spatial and temporal resolutions provides the opportunity to improve forecasts in an operational context. Data assimilation (DA) is one of the most effective ways to reduce the error associated with the forecasts through the incorporation of available observations into numerical models. Here we present a new implementation of an ensemble-based data assimilation system based on the coupling between the FALL3D dispersal model and the Parallel Data Assimilation Framework (PDAF). The implementation is based on the last version release of FALL3D (versions 8.x) tailored to the extreme-scale computing requirements, which has been redesigned and rewritten from scratch in the framework of the EU Center of Excellence for Exascale in Solid Earth (ChEESE). The proposed methodology can be efficiently implemented in an operational environment by exploiting high-performance computing (HPC) resources. The FALL3D+PDAF system can be run in parallel and supports online-coupled DA, which allows an efficient information transfer through parallel communication. Satellite-retrieved data from recent volcanic eruptions were considered as input observations for the assimilation system.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 594
Author(s):  
Ralph R. Burton ◽  
Mark J. Woodhouse ◽  
Alan M. Gadian ◽  
Stephen D. Mobbs

In this paper, a state-of the art numerical weather prediction (NWP) model is used to simulate the near-field plume of a Plinian-type volcanic eruption. The NWP model is run at very high resolution (of the order of 100 m) and includes a representation of physical processes, including turbulence and buoyancy, that are essential components of eruption column dynamics. Results are shown that illustrate buoyant gas plume dynamics in an atmosphere at rest and in an atmosphere with background wind, and we show that these results agree well with those from theoretical models in the quiescent atmosphere. For wind-blown plumes, we show that features observed in experimental and natural settings are reproduced in our model. However, when comparing with predictions from an integral model using existing entrainment closures there are marked differences. We speculate that these are signatures of a difference in turbulent mixing for uniform and shear flow profiles in a stratified atmosphere. A more complex implementation is given to show that the model may also be used to examine the dispersion of heavy volcanic gases such as sulphur dioxide. Starting from the standard version of the weather research and forecasting (WRF) model, we show that minimal modifications are needed in order to model volcanic plumes. This suggests that the modified NWP model can be used in the forecasting of plume evolution during future volcanic events, in addition to providing a virtual laboratory for the testing of hypotheses regarding plume behaviour.


1995 ◽  
Vol 2 (3/4) ◽  
pp. 269-279 ◽  
Author(s):  
A. W. Woods ◽  
S. M. Bower ◽  
M. I. Bursik

Abstract. We describe a series of models which illustrate the controls upon the evolution of an erupting mixture of ash and gas during an explosive volcanic eruption. For large eruption rates, material typically issues from a crater as a supersonic jet which may entrain and heat sufficient air to become buoyant and form a Plinian eruption column. If a buoyant eruption column is able to form, then this column may ascend to heights of order 10-30 km, depending upon the erupted mass flux. In contrast, for low eruption rates, a shock forms in the crater and the material issues as a slow subsonic flow which generates dense hot ash flows. A new model shows that as such ash flows propagate from the vent, the density of the flow decreases mainly due to sedimentation, until ultimately the residual ash flow becomes buoyant. The distance the flow travels before becoming buoyant increases with the mass flux in the current and the mean size of particles in the current, but decreases with the flow temperature. It also depends upon the mass of air entrained into the collapsing fountain. The mass fraction of solid lifted from such ash flows into the ascending cloud depends mainly upon the mass of air entrained into the collapsing fountain near the volcanic vent. We apply our models to predict run-out distances and deposition patterns produced by erupting volcanoes.


2019 ◽  
Author(s):  
Ayleen Gaete ◽  
Thomas R. Walter ◽  
Stefan Bredemeyer ◽  
Martin Zimmer ◽  
Christian Kujawa ◽  
...  

Abstract. Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2–5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption. Then, our weather station reported a precipitation event, followed by changes in the brightness of the permanent volcanic plume and (10 days later) by the sudden volcanic explosion. The multidisciplinary data exhibited short-term variations associated with the explosion, including (1) an abrupt eruption onset that was seismically identified in the 1–10 Hz frequency band, (2) the detection of a 1.7 km high white-grey eruption column in camera images, and (3) a pronounced spike in sulfur dioxide (SO2) emission rates reaching 55 kg sec−1 during the main pulse of the eruption as measured by a mini-DOAS scanner. Continuous CO2 gas and temperature measurements conducted at a fumarole on the southern rim of the Lascar crater revealed a pronounced change in the trend of the relationship between the carbon dioxide (CO2) mixing ratio and the gas outlet temperature; we believe that this change was associated with the prior precipitation event. An increased thermal anomaly inside the active crater observed through Sentinel-2 images and drone overflights performed after the steam-driven explosion revealed the presence of a fracture ~ 50 metres in diameter truncating the dome and located deep inside the active crater, which coincides well with the location of the thermal anomaly. Altogether, these observations lead us to infer that a lava dome was present and subjected to cooling and inhibited degassing. We conjecture that a precipitation event led to the short-term build-up of pressure inside the shallow dome that eventually triggered a vent-clearing phreatic explosion. This study shows the chronology of events culminating in a steam-driven explosion but also demonstrates that phreatic explosions are difficult to forecast, even if the volcano is thoroughly monitored; these findings also emphasize why ascending to the summits of Lascar and similar volcanoes is hazardous, particularly after considerable rainfall.


Author(s):  
Takehiro Koyaguchi ◽  
Yujiro J. Suzuki ◽  
Tomofumi Kozono

2021 ◽  
Author(s):  
Ákos Horváth ◽  
Olga A. Girina ◽  
James L. Carr ◽  
Dong L. Wu ◽  
Alexey A. Bril ◽  
...  

Abstract. In a companion paper (Horváth et al., 2021), we introduced a new technique to estimate volcanic eruption column height from extremely oblique near-limb geostationary views. The current paper demonstrates and validates the technique in a number of recent eruptions, ranging from ones with weak columnar plumes to subplinian events with massive umbrella clouds and overshooting tops that penetrate the stratosphere. Due to its purely geometric nature, the new method is shown to be unaffected by the limitations of the traditional brightness temperature method, such as height underestimation in subpixel and semitransparent plumes, ambiguous solutions near the tropopause temperature inversion, or the lack of solutions in undercooled plumes. The side view height estimates were in good agreement with plume heights derived from ground-based video and satellite stereo observations, suggesting they can be a useful complementary to established techniques.


2021 ◽  
Author(s):  
Leonardo Mingari ◽  
Arnau Folch ◽  
Andrew T. Prata ◽  
Federica Pardini ◽  
Giovanni Macedonio ◽  
...  

Abstract. Modelling atmospheric dispersal of volcanic ash and aerosols is becoming increasingly valuable for assessing the potential impacts of explosive volcanic eruptions on infrastructures, air quality, and aviation. Management of volcanic risk and reduction of aviation impacts can strongly benefit from quantitative forecasting of volcanic ash. However, an accurate prediction of volcanic aerosol concentrations using numerical modelling relies on proper estimations of multiple model parameters which are prone to errors. Uncertainties in key parameters such as eruption column height, physical properties of particles or meteorological fields, represent a major source of error affecting the forecast quality. The availability of near-real-time geostationary satellite observations with high spatial and temporal resolutions provides the opportunity to improve forecasts in an operational context by incorporating observations into numerical models. Specifically, ensemble-based filters aim at converting a prior ensemble of system states into an analysis ensemble by assimilating a set of noisy observations. Previous studies dealing with volcanic ash transport have demonstrated that a significant improvement of forecast skill can be achieved by this approach. In this work, we present a new implementation of an ensemble-based Data Assimilation (DA) method coupling the FALL3D dispersal model and the Parallel Data Assimilation Framework (PDAF). The FALL3D+PDAF system runs in parallel, supports online-coupled DA and can be efficiently integrated into operational workflows by exploiting high-performance computing (HPC) resources. Two numerical experiments are considered: (i) a twin experiment using an incomplete dataset of synthetic observations of volcanic ash and, (ii) an experiment based on the 2019 Raikoke eruption using real observations of SO2 mass loading. An ensemble-based Kalman filtering technique based on the Local Ensemble Transform Kalman Filter (LETKF) is used to assimilate satellite-retrieved data of column mass loading. We show that this procedure may lead to nonphysical solutions and, consequently, conclude that LETKF is not the best approach for the assimilation of volcanic aerosols. However, we find that a truncated state constructed from the LETKF solution approaches the real solution after a few assimilation cycles, yielding a dramatic improvement of forecast quality when compared to simulations without assimilation.


2016 ◽  
Vol 9 (1) ◽  
pp. 431-450 ◽  
Author(s):  
A. Folch ◽  
A. Costa ◽  
G. Macedonio

Abstract. Eruption source parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1-D (one-dimensional) cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in the presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an effective grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the effective particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland). The modular structure of the code facilitates the implementation in the future code versions of more quantitative ash aggregation parameterization as further observations and experiment data will be available for better constraining ash aggregation processes.


Sign in / Sign up

Export Citation Format

Share Document