Measurement Burst Designs to Improve Precision in Peer Research

2021 ◽  
Author(s):  
Ryan J. Persram ◽  
Bianca Panarello ◽  
Melisa Castellanos ◽  
Lisa Astrologo ◽  
William M. Bukowski

Measurement burst designs, in which assessments of a set of constructs are made at two or more times in quick succession (e.g., within days), can be used as a novel method to improve the stability of basic measures typically used in longitudinal peer research. In this Element, we hypothesized that the stabilities for adolescent-reported peer acceptance, anxiety, and self-concept would be stronger when using the measurement burst approach versus the single time observation. Participants included youth between 10 and 13 years old who completed (a) sociometric assessments of acceptance, and measures of (b) social and test anxiety, and (c) self-concept across three times with two assessments made at each burst. Findings broadly showed that the stabilities were significantly stronger with the measurement burst when compared to the single time assessment, supporting our main hypothesis. We discuss the utility of the measurement burst in a broader context and considerations for researchers.

Author(s):  
Giselle D' Souza

Test anxiety and distress occupy pivotal positions in students' lives today, because of over emphasis on academic achievement in the modern educational system. The need for high performance in examinations has defeated the very purpose of education. The SSC examination has come to be an exhaustive exercise that makes the students learn by rote rather than comprehension. There are a few who feel completely trapped in their situation and indulge in self-destructive acts like suicide. The present research study attempted at understanding the likely role of personality correlates namely, academic self-concept, self-efficacy and locus of control in alleviating the different dimensions of stress encountered by students of standard X. It revealed a significant relationship between stress and the mentioned variables and could have important implications in helping students of standard X come to terms with their invaluable self-worth in effectively coping with the evil of the present century -stress.


2021 ◽  
Author(s):  
Hua Liu ◽  
Zelin Niu ◽  
Yuanhong Dong ◽  
Naifei Liu ◽  
Shuocheng Zhang

Abstract In order to study the influence of chemical solution on the stability of loess embankment in seasonally frozen regions, the compression index, shear strength index and embankment safety factor of compacted loess fillings that were treated by different concentrations of chemical solution were analyzed through laboratory test and slope stability analysis program. The experimental results showed that the collapsible coefficients of remolded loess treated by different chemical solution will all increase which comparing the distilled water, and then will change again after freezing-thawing cycles (FTCs). The compression index of undisturbed loess will show regularity with the increase of chemical solution concentration. The shear strength of remolded loess also changed under the chemical solution and FTCs. Besides, simulation of the strength parameters by limit equilibrium methods showed that the safety factor of loess embankment with treatment of solution was significantly higher than that of untreated one, and the FTC would cause a further deterioration. The embankment stability improved after treated by chemical solution without considering seepage of rainwater. These results would provide a novel method to the problem of embankment stability related to environmental condition changes.


2021 ◽  
Author(s):  
Sangyeon Cho ◽  
Seok-Hyun Yun

<p>Lead halide perovskites (LHP) microcrystals are promising materials for various optoelectronic applications. Surface coating on particles is a common strategy to improve their functionality and environmental stability, but LHP is not amenable to most coating chemistries because of its intrinsic weakness against polar solvents. Here, we describe a novel method of synthesizing LHP microcrystals in a super-saturated polar solvent using sonochemistry and applying various functional coatings on individual microcrystals <i>in situ</i>. We synthesize cesium lead bromine perovskite (CsPbBr<sub>3</sub>) microparticles capped with organic poly-norepinephrine (pNE) layers. The catechol group of pNE coordinates to bromine-deficient lead atoms, forming a defect-passivating and diffusion-blocking shell. The pNE layer enhances the stability of CsPbBr<sub>3</sub> in water by 2,000-folds, enabling bright luminescence and lasing from single microcrystals in water. Furthermore, the pNE shell permits biofunctionalization with proteins, small molecules, and lipid bilayers. Luminescence from CsPbBr<sub>3</sub> microcrystals is sustained in water over 1 hour and observed in live cells. The functionalization method may enable new applications of LHP particles in water-rich environments.<b></b></p>


Author(s):  
RADITYA ISWANDANA ◽  
RICHA NURSELVIANA ◽  
SUTRIYO SUTRIYO

Objective: Gold nanoparticles (AuNPs) are highly useful for drug delivery, but their application is limited by their stability as they readily aggregate.This issue can be prevented by adding a stabilizing agent such as resveratrol (RSV), which is a polyphenol derived from plants, that is used to preventcancer. Therefore, we propose a novel method to prepare stable RSV-conjugated nanoparticles modified with polyethylene glycol (RSV-AuNP-PEG).Methods: In the first step, the Turkevich method was used to synthesize the AuNPs. Then, PEG was added as stabilizer agent and conjugated with RSV.The synthesized conjugates were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, particle sizeanalysis, and high-performance liquid chromatography.Results: The obtained RSV-AuNP-PEG had a particle size of 83.93 nm with a polydispersity index (PDI) of 0.562 and formed a translucent purple-redfluid in solution. The zeta potential was −22.9 mV, and the highest entrapment efficiency was 75.86±0.66%. For comparison, the RSV-AuNP solutionwas purple and turbid, the particle size was 51.97 nm with a PDI of 0.694, and the zeta potential was −24.6 mV. The stability test results showed thatthe storage stability of RSV-AuNP-PEG was better than that of AuNP-RSV. Further, the RSV-AuNP-PEG was shown to be most stable in 2% bovine serumalbumin (BSA) while the AuNP-RSV was most stable in 2% BSA in phosphate-buffered saline pH 7.4.Conclusion: These results show that modification of RSV-conjugated AuNPs with PEG effectively prevents their aggregation in storage, but only incertain mediums.


2019 ◽  
Vol 28 (04) ◽  
pp. 1950068 ◽  
Author(s):  
Tian-Bo Deng

This paper proposes a novel method for the design of a recursive second-order (biquadratic) all-pass phase compensator with controllable stability margin. The design idea stems from the generalized stability triangle (GST) derived by the author for the second-order biquadratic digital filter. Based on the GST, a parameter-transformation method is proposed on the transformations of the denominator coefficients of the transfer function of the biquadratic phase compensator. The transformations convert the original denominator coefficients to other new parameters, and any values of those new parameters can guarantee that the GST condition is always satisfied. Optimizing the new parameters yields a biquadratic phase compensator that definitely meets a prespecified stability margin. That is, a biquadratic all-pass phase compensator can be designed to have an arbitrarily specified stability margin. This in turn avoids the occurrence that a recursive phase compensator may become unstable in the practical applications. Thus, the resulting biquadratic phase compensator has robust stability, which is extremely important during the practical filtering operations. A design example is given to show the stability margin guarantee as well as the approximation accuracy.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2644 ◽  
Author(s):  
Willem-Jan Dirkx ◽  
Rens Beek ◽  
Marc Bierkens

Backward erosion by piping is one of the processes that threaten the stability of river embankments in the Netherlands. During high river stages, groundwater flow velocities underneath the embankment increase as a result of the steepened hydraulic gradient. If a single outflow point exists or forms, the concentrated flow can entrain soil particles, leading to the formation of a subsurface pipe. The processes controlling this phenomenon are still relatively unknown due to their limited occurrence and because piping is a subsurface phenomenon. To study the initiation of piping, we performed laboratory experiments in which we induced water flow through a porous medium with a vertically orientated outflow point. In these experiments, we explicitly considered grain size variations, thus adding to the existing database of experiments. Our experiments showed that the vertical velocity needed for the initiation of particle transport can be described well by Stokes’ law using the median grain size. We combine this with a novel method to relate bulk hydraulic conductivity to the grain size distribution. This shows that knowledge of the grain size distribution and the location of the outflow point are sufficient to estimate the hydraulic gradient needed to initiate pipe formation in the experiment box.


2006 ◽  
Vol 17 (10) ◽  
pp. 1375-1390 ◽  
Author(s):  
FRANCESCA TOSI ◽  
STEFANO UBERTINI ◽  
SAURO SUCCI ◽  
HUDONG CHEN ◽  
ILYA V. KARLIN

In the recent years the entropic version of the lattice Boltzmann method (ELB) has made proof of significantly enhanced numerical stability as compared to the standard single-time relaxation form of the lattice Boltzmann equation. In this paper, we compare ELB with a more empirical procedure, based on the idea of modifying the value of the relaxation time in such a way as to enforce the positivity of the kinetic distribution function (fix-up method). The stability enhancement due to ELB and fix-up are compared for the case a two-dimensional lid-driven cavity flow. It is shown that ELBM offers higher stability at a moderate price in terms of computational overhead. On the other hand, even the simple fix-up procedure can provide significant savings over the standard single-time relaxation method, virtually cost-free in terms of computational requirements.


1972 ◽  
Vol 42 (2) ◽  
pp. 109-110 ◽  
Author(s):  
Douglas P. Howard ◽  
Susan B. Stainback ◽  
William C. Stainback

Sign in / Sign up

Export Citation Format

Share Document