scholarly journals 3094 Production of Engineered Cardiac Tissue for Disease Modeling

2019 ◽  
Vol 3 (s1) ◽  
pp. 18-19
Author(s):  
Morgan Ellis ◽  
Elizabeth Lipke

OBJECTIVES/SPECIFIC AIMS: Cardiovascular diseases (CVD) is the leading cause of death worldwide in both men and women due to lack of cardiac regeneration after disease or damaged is caused. There are many challenges to studying CVD since native cardiomyocytes cannot be cultured in vitro. With the advancements in biomaterial and pluripotent stem cells research, scientists are now able to produce engineered cardiac tissue models in vitro that mimic the native myocardium. This study shows our methods for producing engineered cardiac tissue with potential applications in cardiac regeneration, disease modeling, and scalable production. METHODS/STUDY POPULATION: In this study, human induced pluripotent stem cells (hiPSCs) were combined with two different photocrosslinkable hybrid biomaterials, poly (ethylene)- glycol fibrinogen (PF) and gelatin methacrylate (GelMa), in various tissue geometries to form 3D human engineered cardiac tissues (3D-hECTs). To study tissue growth and contraction, image and video analysis was performed at specific timepoints. To analyze differentiation efficiency and cell population, flow cytometry was performed using cardiac markers. To evaluate gene expression, qPCR was performed using pluripotency and cardiac specific primers. RESULTS/ANTICIPATED RESULTS: Direct cardiac differentiation of encapsulated hiPSCs resulted in synchronously contracting 3D-hECTs in both biomaterials and all tissue geometries. Spontaneous contractions started on Day 7 and increased in velocity, frequency, and synchronicity over time. 3D-hECTs had high cell viability with > 70% of cells positive for cardiac markers. Engineered tissues showed appropriate temporal changes in gene expression over time with pluripotency gene expression decreasing and cardiac gene expression increasing. DISCUSSION/SIGNIFICANCE OF IMPACT: This study shows the potential for direct differentiation of encapsulated hiPSCs to produce physiologically relevant engineered cardiac tissues. Resulting 3D-hECTS showed features of mature myocardium with appropriate cardiomyocyte populations, mechanical motion, and gene expression. Using this platform, we are able to produce engineered cardiac tissue in a variety of biomaterials and tissue geometries to study new therapeutics, mechanism of disease, and scalable tissue culture.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei Liu ◽  
Shi Chen ◽  
Yaxing Xu ◽  
Yulin Lyu ◽  
Jinlin Wang ◽  
...  

AbstractExtended pluripotent stem (EPS) cells have shown great applicative potentials in generating synthetic embryos, directed differentiation and disease modeling. However, the lack of a xeno-free culture condition has significantly limited their applications. Here, we report a chemically defined and xeno-free culture system for culturing and deriving human EPS cells in vitro. Xeno-free human EPS cells can be long-term and genetically stably maintained in vitro, as well as preserve their embryonic and extraembryonic developmental potentials. Furthermore, the xeno-free culturing system also permits efficient derivation of human EPS cells from human fibroblast through reprogramming. Our study could have broad utility in future applications of human EPS cells in biomedicine.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2021 ◽  
Author(s):  
Dimitrios Voulgaris ◽  
Polyxeni Nikolakopoulou ◽  
Anna Herland

Generating astrocytes from induced pluripotent stem cells has been hampered by either prolonged differentiation -spanning over two months -or by shorter protocols that generate immature astrocytes, devoid of salient inflammation-associated astrocytic traits pivotal for CNS neuropathological modeling. We directed human neural stem cells derived from induced pluripotent stem cells to astrocytic commitment and maturity by orchestrating an astrocytic-tuned culturing environment. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of AQP4 and, remarkably, the expression and functionality of glutamate transporter EAAT2. We also show that this protocol generates astrocytes that encompass traits critical in CNS disease modeling, such as glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile which is on par with primary astrocytes. This protocol generates a multifaceted astrocytic model suitable for CNS in vitro disease modeling and personalized medicine through brain-on-chip technologies.


2016 ◽  
Vol 4 (20) ◽  
pp. 3482-3489 ◽  
Author(s):  
Giuliana E. Salazar-Noratto ◽  
Frank P. Barry ◽  
Robert E. Guldberg

Disease-specific pluripotent stem cells can be derived through genetic manipulation of embryonic stem cells or by reprogramming somatic cells (induced pluripotent stem cells).


Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Meike Hohwieler ◽  
Martin Müller ◽  
Pierre-Olivier Frappart ◽  
Sandra Heller

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.


2020 ◽  
Vol 21 (17) ◽  
pp. 6124
Author(s):  
Clara Sanjurjo-Rodríguez ◽  
Rocío Castro-Viñuelas ◽  
María Piñeiro-Ramil ◽  
Silvia Rodríguez-Fernández ◽  
Isaac Fuentes-Boquete ◽  
...  

Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.


2020 ◽  
Vol 21 (17) ◽  
pp. 6388
Author(s):  
Melania Lippi ◽  
Ilaria Stadiotti ◽  
Giulio Pompilio ◽  
Elena Sommariva

The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Debora Salerno ◽  
Alessandro Rosa

Human pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, represent powerful tools for disease modeling and for therapeutic applications. PSCs are particularly useful for the study of development and diseases of the nervous system. However, generating in vitro models that recapitulate the architecture and the full variety of subtypes of cells that make the complexity of our brain remains a challenge. In order to fully exploit the potential of PSCs, advanced methods that facilitate the identification of molecular signatures in neural differentiation and neurological diseases are highly demanded. Here, we review the literature on the development and application of digital color-coded molecular barcoding as a potential tool for standardizing PSC research and applications in neuroscience. We will also describe relevant examples of the use of this technique for the characterization of the heterogeneous composition of the brain tumor glioblastoma multiforme.


Sign in / Sign up

Export Citation Format

Share Document