scholarly journals The role of probiotics on the roadmap to a healthy microbiota: a symposium report

2020 ◽  
Vol 1 ◽  
Author(s):  
Stacey Lockyer ◽  
Marisol Aguirre ◽  
Louise Durrant ◽  
Bruno Pot ◽  
Kaori Suzuki

ABSTRACT The ninth International Yakult Symposium was held in Ghent, Belgium in April 2018. Keynote lectures were from Professor Wijmenga on using biobanks to understand the relationship between the gut microbiota and health; and Professor Hill on phage–probiotic interactions. Session one included talks from Professor Plӧsch on epigenetic programming by nutritional and environmental factors; Professor Wilmes on the use of “omics” methodologies in microbiome research and Professor Rescigno on the gut vascular barrier. Session two explored the evidence behind Lactobacillus casei Shirota with Dr Nanno explaining the plasticity in immunomodulation that enables the strain to balance immune functions; Dr Macnaughtan outlining its potential therapeutic use in cirrhosis and Professor Nishida detailing effects in subjects under stress. The third session saw Professor Marchesi describing that both the host genes and the gut microbiota can play a role in cancer; Professor Bergheim highlighting crosstalk between the gut and the liver and Professor Cani describing the relationship between the gut microbiota and the endocrine system. The final session explored probiotic mechanisms, with Professor Lebeer dissecting the challenges in conducting mechanistic studies; Professor Wehkamp describing the mucosal defence system and Professor Van de Wiele detailing methods for modelling the gut microbiota in vitro.

2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


2021 ◽  
Vol 28 ◽  
Author(s):  
Lucia M. Balsa ◽  
Enrique J. Baran ◽  
Ignacio E. León

: Copper is an essential element for most aerobic organisms, with an important function as a structural and catalytic cofactor, and in consequence, it is implicated in several biological actions. The relevant aspects of chemistry and biochemistry and the importance of copper compounds in medicine give us a comprehensive knowledge of the multifaceted applications of copper in physiology and physiopathology. In this review, we present an outline of the chemistry and the antitumor properties of copper complexes on breast, colon, and lung cancer cells focus on the role of copper in cancer, the relationship between structure-activity, molecular targets, and the study of the mechanism of action involved in its anticancer activity. This overview is expected to contribute to understanding the design, synthesis, uses of copper complexes as antitumor agents in the most common cancers.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


Author(s):  
Khrystyna Kvit ◽  
Viacheslav Kharchenko

 Researchers have studied the connection between cholesterol and microbiota for a long time. The results of widely published data demonstrate that the relationship between the lipid balance of the blood and the composition of the intestinal microbiota is apparent. The oblective of this study was, we tried to find the path through which this connection is carried out. Furthermore, the aim was to analyze the studies, which demonstrate the decrease of blood lipids as the result of different prebiotics and probiotics prescribtion. Also, the screening of different data from previous years was done for comparing the changes in the pathogenesis.


1986 ◽  
Vol 64 (7) ◽  
pp. 993-998 ◽  
Author(s):  
Beverley Greenwood ◽  
Stephanie Diamant ◽  
J. S. Davison

The aim of the experiments was to examine, in vitro, the role of the enteric nervous system in the relationship between motor activity and transmural potential difference (PD) in the guinea pig jejunum and colon using the nerve blocking agents tetrodotoxin (TTX) and aconitine. Histological data showed that perfusion of the intestinal segments with gassed Hepes solution was essential for the maintenance of transmural PD. Disruption of the mucosa was associated with a loss of spontaneous fluctuations in transmural PD without any loss of spontaneous motor activity. Under spontaneous conditions, a neural pathway exists linking jejunal and colonic motility with transmural PD. However, in some cases a mechanical link was also apparent, as an attenuated TTX and aconitine–resistant component.


2015 ◽  
Vol 112 (32) ◽  
pp. 10038-10043 ◽  
Author(s):  
Noortje Ijssennagger ◽  
Clara Belzer ◽  
Guido J. Hooiveld ◽  
Jan Dekker ◽  
Saskia W. C. van Mil ◽  
...  

Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.


2020 ◽  
Vol 78 (Supplement_1) ◽  
pp. 21-28
Author(s):  
Shengmin Sang ◽  
Emmanuel Idehen ◽  
Yantao Zhao ◽  
YiFang Chu

Abstract Although the biological mechanisms surrounding the widely reported association between whole grain (WG) consumption and reduced risk of several diseases are not fully understood, there is growing evidence suggesting that inflammation may be an essential mediator in this multifaceted process. It also appears that several mechanisms influence the modulatory actions of WGs on inflammation, including the effect of fiber, phytochemicals, and their microbial-derived metabolites. While some of these effects are direct, others involve gut microbiota, which transform important bioactive substances into more useful metabolites that moderate inflammatory signaling pathways. This review evaluates emerging evidence of the relationship between WGs and their effects on markers of subclinical inflammation, and highlights the role of fiber, unique WG phytochemicals, and gut microbiota on the anti-inflammatory effects of WG intake.


2013 ◽  
Vol 218 (3) ◽  
pp. R37-R47 ◽  
Author(s):  
James M Evans ◽  
Laura S Morris ◽  
Julian R Marchesi

The human microbiome contains a vast array of microbes and genes that show greater complexity than the host's own karyome; the functions of many of these microbes are beneficial and show co-evolution with the host, while others are detrimental. The microbiota that colonises the gut is now being considered as a virtual organ or emergent system, with properties that need to be integrated into host biology and physiology. Unlike other organs, the functions that the gut microbiota plays in the host are as yet not fully understood and can be quite easily disrupted by antibiotics, diet or surgery. In this review, we look at some of the best-characterised functions that only the gut microbiota plays and how it interacts with the host's endocrine system and we try to make it clear that the 21st-century biology cannot afford to ignore this facet of biology, if it wants to fully understand what makes us human.


Sign in / Sign up

Export Citation Format

Share Document