scholarly journals Influence of laser polarization on collective electron dynamics in ultraintense laser–foil interactions

Author(s):  
Bruno Gonzalez-Izquierdo ◽  
Ross J. Gray ◽  
Martin King ◽  
Robbie Wilson ◽  
Rachel J. Dance ◽  
...  

The collective response of electrons in an ultrathin foil target irradiated by an ultraintense ( ${\sim}6\times 10^{20}~\text{W}~\text{cm}^{-2}$ ) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture’, inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.

2007 ◽  
Vol 21 (03n04) ◽  
pp. 642-646 ◽  
Author(s):  
A. ABUDUREXITI ◽  
Y. MIKADO ◽  
T. OKADA

Particle-in-Cell (PIC) simulations of fast particles produced by a short laser pulse with duration of 40 fs and an intensity of 1020W/cm2 interacting with a foil target are performed. The experimental process is numerically simulated by considering a triangular concave target illuminated by an ultraintense laser. We have demonstrated increased acceleration and higher proton energies for triangular concave targets. We also determined the optimum target plasma conditions for maximum proton acceleration. The results indicated that a change in the plasma target shape directly affects the degree of contraction accelerated proton bunch.


2018 ◽  
Vol 36 (4) ◽  
pp. 507-512 ◽  
Author(s):  
J. Domański ◽  
J. Badziak ◽  
M. Marchwiany

AbstractThis paper presents the results of numerical investigations into the acceleration of heavy ions by a multi-PW laser pulse of ultra-relativistic intensity, to be available with the Extreme Light Infrastructure lasers currently being built in Europe. In the numerical simulations, performed with the use of a multi-dimensional (2D3V) particle-in-cell code, the thorium target with a thickness of 50 or 200 nm was irradiated by a circularly polarized 20 fs laser pulse with an energy of ~150 J and an intensity of 1023 W/cm2. It was found that the detailed run of the ion acceleration process depends on the target thickness, though in both considered cases the radiation pressure acceleration (RPA) stage of ion acceleration is followed by a sheath acceleration stage, with a significant role in the post-RPA stage being played by the ballistic movement of ions. This hybrid acceleration mechanism leads to the production of an ultra-short (sub-picosecond) multi-GeV ion beam with a wide energy spectrum and an extremely high intensity (>1021 W/cm2) and ion fluence (>1017 cm−2). Heavy ion beams of such extreme parameters are hardly achievable in conventional RF-driven ion accelerators, so they could open the avenues to new areas of research in nuclear and high energy density physics, and possibly in other scientific domains.


2008 ◽  
Vol 26 (3) ◽  
pp. 397-409 ◽  
Author(s):  
V.V. Kulagin ◽  
V.A. Cherepenin ◽  
M.S. Hur ◽  
J. Lee ◽  
H. Suk

AbstractThe evolution of a high-density electron beam in the field of a super-intense laser pulse is considered. The one-dimensional (1D) theory for the description of interaction, taking into account the space-charge forces of the beam, is developed, and exact solutions for the equations of motion of the electrons are found. It was shown that the length of the high-density electron beam increases slowly in time after initial compression of the beam by the laser pulse as opposed to the low-density electron beam case, where the length is constant on average. Also, for the high-density electron beam, the sharp peak frozen into the density distribution can appear in addition to a microbunching, which is characteristic for a low-density electron beam in a super-intense laser field. Characteristic parameters for the evolution of the electron beam are calculated by an example of a step-like envelope of the laser pulse. Comparison with 1D particle-in-cell simulations shows adequacy of the derived theory. The considered issue is very important for a special two-pulse realization of a Thomson scattering scheme, where one high-intensity laser pulse is used for acceleration, compression and microbunching of the electron beam, and the other probe counter-streaming laser pulse is used for scattering with frequency up-shifting and amplitude enhancement.


2005 ◽  
Vol 12 (10) ◽  
pp. 100701 ◽  
Author(s):  
A. Fukumi ◽  
M. Nishiuchi ◽  
H. Daido ◽  
Z. Li ◽  
A. Sagisaka ◽  
...  

2018 ◽  
Vol 167 ◽  
pp. 01004 ◽  
Author(s):  
Jaroslaw Domanski ◽  
Jan Badziak

One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.


1997 ◽  
Vol 58 (4) ◽  
pp. 613-621 ◽  
Author(s):  
JETENDRA PARASHAR ◽  
H. D. PANDEY ◽  
A. K. SHARMA ◽  
V. K. TRIPATHI

An intense short laser pulse or a millimetre wave propagating through a plasma channel may act as a wiggler for the generation of shorter wavelengths. When a relativistic electron beam is launched into the channel from the opposite direction, the laser radiation is Compton/Raman backscattered to produce coherent radiation at shorter wavelengths. The scheme, however, requires a superior beam quality with energy spread less than 1% in the Raman regime.


Laser Physics ◽  
2006 ◽  
Vol 16 (7) ◽  
pp. 1107-1110 ◽  
Author(s):  
H. Kotaki ◽  
A. Yamazaki ◽  
I. Daito ◽  
M. Kando ◽  
S. V. Bulanov ◽  
...  

2014 ◽  
Vol 541-542 ◽  
pp. 470-473 ◽  
Author(s):  
Zhan Liang Wang ◽  
Yu Bin Gong ◽  
Hua Rong Gong ◽  
Jin Jun Feng ◽  
Xiong Xu

The Sheet Electron Beam Vacuum Electron Device is an Attractive Choice for Generating High Power Millimeter/terahertz Wave Radiation. the Sheet Electron Beam Gun is a Key Component for the Sheet Beam Vacuum Electron Device. in this Paper, a Novel Sheet Electron Beam Gun was Proposed for a Terahertz Traveling-Wave Tube. the Theories of Sheet Beam Gun are Deduced Based on the Round Beam Gun Theories. the Track of 24.5kV, 1A, 0.4mm8mm Sheet Beam is Gained through 3D Particle-in-Cell Simulation and the Theories are Verified. the Investigation Results Show that, the Design Method of the Sheet Beam Gun is Easy and Reliable.


2015 ◽  
Vol 22 (2) ◽  
pp. 167-171
Author(s):  
J. Guo ◽  
B. Yu

Abstract. With two-dimensional (2-D) particle-in-cell (PIC) simulations we investigate the evolution of the double layer (DL) driven by magnetic reconnection. Our results show that an electron beam can be generated in the separatrix region as magnetic reconnection proceeds. This electron beam could trigger the ion-acoustic instability; as a result, a DL accompanied with electron holes (EHs) can be found during the nonlinear evolution stage of this instability. The spatial size of the DL is about 10 Debye lengths. This DL propagates along the magnetic field at a velocity of about the ion-acoustic speed, which is consistent with the observation results.


1972 ◽  
Vol 50 (19) ◽  
pp. 2338-2347 ◽  
Author(s):  
H. A. Baldis ◽  
R. A. Nodwell ◽  
J. Meyer

The interaction between a 20 MW Q-switched ruby laser pulse and a partially ionized argon plasma has been studied experimentally. When the focused laser pulse is fired into the plasma, a transient emission from the plasma may be observed both in the continuum and line emission. From measurements of the absolute intensities of this transient radiation, estimates have been made of the population density of the excited atoms and of the electron densities. The Stark broadening of the Ar II lines has also been measured to obtain the electron density in the transient plasma and data obtained in this way are consistent with those obtained from the continuum radiation. During the time when the laser light is incident on the plasma the Ar II lines show a strong asymmetry which disappears quickly after the laser pulse has terminated. This asymmetry can be explained in terms of the electron density gradient present in the expanding perturbed plasma.


Sign in / Sign up

Export Citation Format

Share Document